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Rate equations so far

Most models with grain-surface chemistry have used so-called
“classical grains”, which are characterized by a radius of 0.1pm
and 10° binding sites for adsorbates.

With the canonical gas-to-dust mass ratio of 100 and an assumed
grain mass density of 3.00 g/cm3, the number density of 0.1um
grains Is 1.33 x 107*2n, where n, I1s the number density of

hydrogen in all forms.

However, grains are distributed in various sizes. In addition, they
grows with time. Not many full gas-grain chemical simulations
have been done to understand how the diversity of grain sizes
affects molecular abundances in the cold interstellar medium.




Nautilus multi-grain model

We used 10, 30 and 60 grain sizes.

Radius range of 0.005pum to 0.25um

We used two grain size distributions (MRN and WD)

Flexibility to use different grain surface temperature and
other surface properties for different grain sizes




Cosmic-ray-induced desorption rate

]\.: r (3 ) — f ( Tm ax (I ) )i\ﬁ vap ( Za Tm ax ( [ ) )

Hasegawa & Herbst (1993).

where f(T__ (1)) Is called duty cycle of the /th grain at elevated
temperature T__ (1) and k__(1,T__ (1)) Is the thermal desorption

evap

rate for the species on the ith grain at temperature T__ (i).




What changes with grain sizes in cold dense cores

‘ Avg. Grain Temperature ‘

Multi grain model
Single grain model

Herbst and Cuppen 2006

Temperature [K]

A
A
a
A N

*AAAAAA

Surface temperature of dust grains

e Mmulti grain model

A Single grain model
L J e

o, X
[ J

Temperature [K]

Grain radius [cm]




MRN and WD grain size distributions

1. MRN Size Distribution: mathis, Rumpl & Nordsieck, 1977, ApJ, 217, 425

dny, = Cnya™>>da, ag, <a < dp,

where, n, is the number density of hydrogen in all form, a is the

grain-radius in cm. This relation is valid between the minimum
and the maximum size of the grains a,,, =50 A and a,_, = 0.25

um. The grain constant (C), is given by 107%513(10-%?>1) cm?® for
graphite (silicate).

2. WD Size Distribution Weingartner and Draine, 2001, ApJ, 548, 296 ( WD)




‘Feature of grain size distribution ‘

Number density of grain sizes | | Total effective surface area
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| Results: Impact of CR-induced desorption |

Single grain, with CR
Single grain, without CR
MRN10, with CR
MRN10, without CR
MRN30, with CR
MRN30, without CR
MRN60, with CR
MRNG60, without CR
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' no CR

Results

Percentage ice abundance
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with CR |

| Results

Percentage ice abundance

Percentage lce abundance

=) - - -
T =1 2
=

[1eaA] awnp

|____ T |

=

Percentage ice abundance

Percentage ice abundance

- -
(=]

o
=

[1eaA] swiL

Percentage ice abundance

Percentage Ice abundance

Percentage ice abundance

Percentage Ice abundance

a - - - - -
- P o =

[1eaA] swiL

[1eaA] awi L

=

1.65x10° 6.2x10° 2.5x107
Grain radius [cm]

1.65x107° 6.2<10° 2.5x10°  5x107

Grain radius

5x107

1.65x107° 6.2x10° 2.5x107°

Grain radius [cm]

Sx107

[em]

Igbal & Wakelam 2018




n
T
©
Q
>
w
o
™
iy
©
Q
o
c
©
o
c
=
Q
©
Q
k3]
Q
o
©
)
c
Q
Q
-
[}
o

Results: Impact of CR-Induced desorption
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Results: Impact of CR-induced desorption
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Results: Impact of grain size distribution
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Results: Impact of grain size distribution
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Results: Comparison with observation

1 .
D@ = 5— D llogln(X;, 0] - logln(X**)1]| [Wakelam et al. 2006]
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Conclusions

The ice composition is different on different grain sizes. Cosmic ray-
induced desorption play an important role in determining ice composition.

The choice of the MRN or the WD distributions strongly affects the
abundances of most of the species. The cosmic ray induced desorption is
the most effective in the MRN distribution case

Considering a non-uniform surface temperature for the different grain sizes
strongly impacts the overall gas and the ice compositions. The difference in
the chemical compositions between the smaller and the bigger grains are
even stronger

In our model, methanol is very abundant on small grains and more
desorption from the small grains could account for the observed gas phase

abundances. Similar results were found for CH,O, CH,CCH, HCOOH, and
CH,OCH,

The MRN distribution gives a better agreement with TMC-1 observations
considering a uniform or a non-uniform dust temperature while both the
MNR and the WD distributions give a better agreement with L134N with a
non-uniform dust temperature
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