Cosmic Ray—Driven Abstract

Cosmic rays are widely known to have significant physiochemical
Impact on interstellar sources. In addition, laboratory astrophysics

@ o P
Radlatlo n Che mlStr experiments have indicated that cosmic ray interactions with dust
: ; grain ice mantles could lead to astrochemically relevant species,

including complex organic and prebiotic molecules [1].

t o
ln AStrO c h e m l c al M O d e l S In spite of the growing body of experimental work on interstellar
radiation chemistry, incorporating cosmic ray-driven reactions and

processes into astrochemical models has proven challenging, in
part because of a lack of relevant data for many species now
included in chemical networks. Recently [2], we have developed a
general method of estimating radiochemical yields (G-values), rate
coefficients, and decomposition pathways for species that have
not been studied in detail in the laboratory in this context. Here,
we will describe the derivation and application of our method, as
well as point to much needed areas for future development in
astrochemical radiation chemistry modeling.
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Results in Cold Core Models
Above) Pictured here is an illustration of what the bombardment of an interstellar dust grain might look like. In red is a

simulated track of the cosmic ray and "secondary electrons" that are formed when the cosmic ray collides with molecules
in the ice. This track was generated using the CIRIS program - the first microscopic model that can simulate both the Methyl Formate (HCOOCH3)

physical and chemical changes that occur in an irradiated solid. [1]
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Above) Our method of incorporating cosmic ray-driven radiation chemistry into astrochemical models for any
arbitrary species, A, starts with assuming the elementary processes shown in the red box (far left). From these, we
calculate radiation-chemical yields, G-values, using the formule in the green (middle) box. Finally, from these, we
can calculate rate coefficients assuming appropriate values for the flux ( ¢, ) and the electronic stopping cross

section (S, ). We set the electron escape probability, P_, to zero, and the dissociation probability, P, to 0.5. [2] Formation of Suprathermal Precursors Formation of Methyl Formate

Input Parameters Breakdown oI Mean Energy per Ion-Pailr

H2CO = H2CO+ + e~ - HCO* + H* HCO* + CH3O - HCOOCH3
1) Eion
* The ionization energy (work function)
* Can be obtained from NIST
2) WEXC
* The average ionization energy
* Can be estimated from UV-Vis spectra
W,
* The average sub-excitation energy
* Can be calculated as a function of E, and W

CH,0H - CH,OH* + e~ > CH30* + H* HCO + CH,0" = HCOOCH,
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CH, » CH,* + e > CH* + H, ]
W=E +W +&EW__ 1) Left) As shown in Eq. (1), we assume that the mean energy per L
ion-pair is the sum of the ionization energy as well as the energy . 1d _ ,,,,,,,,,,,,,,,,,,,,,,,
M= ©) lost.m some number (§) of excitative {:ollzszons, in .addztl'on to sub- Formation of Ethanol S
ion excitation electrons. Thus, as shown in Eq. (2), axiomatically, we ) I
set the number of ionizing collisions per W to unity, while the N N —
Lo D . . x4 - —12 L ' _
M= g= W—(E,+W,) 3) number of excitative collisions (§) is calculated using Eq. (3). CH, CH,0H > CH,CH,0H R ]
exc = W, ( Above) The breakdown of the energy contributions to the mean \ - T
energy per ion-pair of water. Here, ethanol forms via a -
(typically endothermic) Sl
Calculating the Average Sub-excitation Electron Energy, W_ insertion reaction at 10 K. [4] e 7
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- . W, Right) Gas-phase abundances of ethanol both with (solid y
¥ . f fle)ede line) and without (dotted line) radiation chemistry. [3]
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