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Protoplanetary disks are complex environments...

-

What properties are
most important for
driving disk evolution?

Stellar radiation

...with many ongoing processes that can alter the
outcomes of planet formation Adapted from

Miotello et al. 2023



lonization is central to the disk’s
chemical and physical evolution

ﬂ Stellar radiation

/

particularly when it comes to planet formation!

Adapted from
Miotello et al. 2023



lonization sets the conditions for disk turbulence
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Adapted from
Miotello et al. 2023

lonization drives cold midplane chemistry
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However, there is significant spatial variation in ionization,
making it difficult to resolve and constrain
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Luckily we can trace different ionizing processes using
radio-wavelength observations of molecular ions
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lonization in the closest disk: TW Hya

Observations of N,H* and upper limits on
H,D* point to flaring XR conditions and sub- 101
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Many processes that may suppress CRs in disks
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lonization in the closest disk: TW Hya

Observations of N,H* and upper limits
on H,D* point to sub-interstellar CRs 10717 |- CRISM
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Large inner gap and the only disk with
evidence of turbulence ... at the time
(Flaherty et al. 2020) @@

- |s DM Tau uniquely turbulent
because of high ionization?

- Does the gap impact ionization
environment?

- How does it compare to TW Hya?
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Forward Modeling DM Tau
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Forward Modeling DM Tau
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Forward Modeling DM Tau

Applied under a range of
ionizing conditions
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Emission profiles reveal an ionization gradient in DM Tau
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Outer disk N,H™ requires reduced cosmic rays
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- CR exclusion or
modulation across or
within the disk

Winds? CR detouring?



Surface & midplane tracers both point to high ionization in inner disk
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- Something “boosting”
ionization in the inner disk!

Possibly (1) stellar
energetic particles and/or
(2) substructure making
the inner disk more
permeable to CRs.



DM Tau exhibits evidence of CR exclusion and hints at the interplay
between substructure and the central star
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DM Tau exhibits evidence of CR exclusion and hints at the interplay
between substructure and stellar energetic particles!
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Unifying disk cosmic ray ionization
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But does this really represent F

the “average” disk? We need
to test with larger source
samples!



GM Aur MWC 480 LkCa 15 HD 163296 AS 209 DM Tau V4046 Sg

Multi-line ionization
survey in 7 disks

Long et al. in prep



Normalized intensity

Preliminary radial profiles reveal diverse emission morphology
& hint at complex ionization environments
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Takeaways

Cosmic rays are thought to be a crucial source of ionization in the planet-
forming midplane, but observations of disks suggest modulation is common

Spatially resolved observations of molecular ions & detailed astrochemical
models help us disentangle ionization sources - multi-line studies are key

DM Tau follows common thread of CR modulation, but
results hint at complexities related to substructure and
the central star... Stay tuned for survey results ©

Questions? »
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