

Outline

- Cosmic web and mass accretion
- Early disc formation
- Inflows/outflows and angular momentum
- Matter distributions: do outflows affect Dark Matter?

Voids: 15% of mass 78% of volume

Walls: 25% of mass 18% of volume Cautun et al. 2014

Voids & Walls: Few halos with Mass >1012 Msun

Cautun et al. 2014

Filaments: 50% of mass 6% of volume

Clusters: 10% of mass

Z=1 Clusters become significant at z<~0.5 Clusters are fed by filaments

credit: S. White

Filaments and Walls in place by z~2 Many small filaments at high z

Cautun et al. 2014

High z: filaments are dominated by small scale structures At z=o: small scale structures in filaments are mostly gone

Hydrodynamical Simulations

Hydrodynamical Simulations

Hydrodynamical Simulations

Progenitor baryons of a disc galaxy
Mass is fed by filaments, which contain small structures

Filaments and disc angular momentum

Angular momentum of different shells at turn around (z=3.5)

Increasing angular momentum

Low angular momentum material is accreted first.

Simulated rotation curves

Left: gas which will form stars by z=o. i.e. the inflowing gas that fuels star formation.

→ 100 km/s

Right: gas outflows, i.e. gas which was in the inner star forming region but is not within the virial radius at z=o.

→ 100 km/s

Future stars

Inflows in the disk plane.

Outflows
Outflows perpendicular to the disk
the path of least₂resistance

Comparing to the enriched CGM

Ejection and Re-accretion

Brook, Stinson et al. 2012b Paper II AM transfer Roškar et al. 2010

Core creation mechanism

show effect accumulates with each episode.

The Baryon Cycle in Simulated Galaxies

Brook et al. 2014

Inner slope dependence on M_{*}/M_{halo}

Dark matter profiles determined by two opposite effects: energy from feedback vs increasing gravitational potential

Brook & Di Cintio 2015

Conclusions

- ◆ Galaxy formation is intimately linked to the Cosmic Web at high redshift
- ◆ Imprints of the Cosmic Web can be found in the Milky Way structure and Galactic Archaeological studies
- ◆ Galaxy evolution at later times increasingly involves inflows outflows and recycling
- ◆ There is enough energy in the outflows to flatten the density profile of dark matter halos
- Signatures of halo flattening may be found within galaxy populations