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Outline

Cosmic web and mass accretion
Early disc formation
Inflows/outflows and angular momentum

Matter distributions: do outflows affect Dark Matter?




200,000 galaxies from
Sloan Digital Sky Survey




Codis et al.
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Voids: 15% of mass 78% of volume
Walls: 25% of mass 18% of volume cautunetal. 2014
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Voids & Walls: Few halos with Mass >10*2Msun

Cautun et al. 2014




Filaments: 50% of mass 6% of volume
Clusters: 10% of mass




/=1 credit: S. White

Clusters become significant at z<~o0.5
Clusters are fed by filaments
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Filaments and Walls in place by z~2
Many small filaments at high z
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High z: filaments are dominated by small scale structures
At z=0: small scale structures in filaments are mostly gone




Hydrodynamical Simulations
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Nelson et al. 2013




Hydrodynamical Simulations
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Hydrodynamical Simulations
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Progenitor baryons of a disc galaxy
Mass is fed by filaments, which contain small structures




10 Age > 10Gyr 8 Gyr < Age < 10 Gyr 6 Gyr < Age < 8 Gyr o
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See also Minchev 2012, 2013




Stinson etal 2013 Gasoline/MaGiCC
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Different codes and ICs
Brook etal 2012 Gasoline

Observations:

Van Dokkum et al 2013

MW progenitors selected
by number density

1.5
redshift




Patel et al. 2013 selected by Star Formation Main Sequence Simulations

(a) z=0.05
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Filaments and disc angular momentum

Angular momentum of different shells at turn around (z=3.5)
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Spheroid Dominated at z=0 Disc Dominated at z=0

Sales et al. 2012




Increasing angular momentum
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Low angular momentum material is accreted first.




Simulated rotation curves
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Brook, Stinson et al. 2012




Left: gas which will form stars by Right: gas outflows, i.e. gas which was in
z=0. i.e.theinflowing gas that the inner star forming region but is not
fuels star formation. within the virial radius at z=o.

— 100 km/s — 100 km/s
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Brook et al 2011

Future stars
Outflows perpendicular to the disk
the path of least tesistance

Inflows in the disk plane.
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Comparing to the enriched CGM
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Outflows can be traced by
see Kawata & Rauch 200
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Ejection and Re-accretion

Gas not necessarily expelled from virial radius
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AM transfer RoSkar et al. 2010




Core creation mechanism
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Gas driven away
Dark matter from centre
particle

Gas cools & Force returns to
flows back in original

strength...
Gravitational force
insufficient
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| ...butis weaker at large
Dense, star- : = distances, so the particle
: Particle migrates
forming gas cannot be pulled back
outwards : :
B to its old orbit.
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Process can repeat. Analytic arguments and simulations Creg
show effect accumulates with each episode.

it: Pontzen & Governato 14
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Image: A. Obreja using GRASIL: 3D




The Baryon Cycle in Simulated Galaxies
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outflows
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Inner slope dependence on M,/M, ..,
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Dark matter profiles determined by two opposite effects:
energy from feedback vs increasing gravitational potential
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Flattest profile
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Conclusions

® Galaxy formation is intimately linked to the Cosmic Web at
high redshift

€ Imprints of the Cosmic Web can be found in the Milky Way
structure and Galactic Archaeological studies

€ Galaxy evolution at later times increasingly involves inflows
outflows and recycling

@ There is enough energy in the outflows to flatten the density
profile of dark matter halos

@ Signatures of halo flattening may be found within galaxy
populations




