

Emission nebulae at high redshift

Anna Raiter

Supervisor: Bob Fosbury

European Southern Observatory

Conference in honour of Bob Fosbury, 25 May 2011

Objective

use high-z nebula to trace early chemical evolution - from primordial stars onwards

what features do we expect to observe in the objects hosting very low-metallicity (hot) stars

Part I: UV metal emission lines

The Lynx Arc

other sources

The Lynx arc, z=3.357

- Fosbury et al. 2003 ApJ, 596, 797
- Binette et al. 2003, A&A, 405, 975
- Villar Martin et al. 2004, MNRAS, 355, 1132

Photometry: Lynx arc

The case of GDS J033218.92-275302.7 @ z=5.563

FORS2 spectrum – R ~ 660, L(NIV]1483+87) ~ 10^{43} erg/s

Modelling – how to produce N IV] line

Pop III

Temperature vs metallicity

solar

Photometry: GDS J033218.92-275302.7

Data: GOODS

GDS J033218.92-275302.7 – modelling

standard SED fitting

- ◆ old stellar population age_{*} = 0.9 Gyr
- no reddening
- \bullet M_{*} = $\sim 10^{11}$ M_{\odot}

nebular emission modelling

(assumes: spherical geometry, no assumptions on the IMF, constant density)

- ◆ Teff = \sim 100,000 K (Z_* \sim primordial)
- ◆ log(U) = -1
- ◆ Zneb = ~ 5 % Z_⊙
- \bullet Q(H) = $\sim 3 \times 10^{55} \text{ s}^{-1}$
- no dust in the nebula
- ◆ nebular emission dominates the SED it explains the flat continuum and accounts for the observed Ks-IRAC1 bump ([OIII] lines mimic the Balmer break of old stellar population !!!)
- \bullet M \sim 3 x 10⁸ M $_{\odot}$

Raiter A., Fosbury R.A.E., Taimoorinia H. A&A, 2010

Also: Zackrisson et al. 2008, Schaerer & De Barros 2009

More sources

z=3.652 (J033217.22-274754.4) from the GOODS-S

z=4.02 from Glickman et al. 2007

Part II H and He emission: Lyα, 2y continuum, He II 1640 Å

In collaboration with Daniel Schaerer (Geneva Observatory)
Raiter A., Schaerer D., Fosbury R.A.E. A&A, 2010

- Search for PopIII sources at high redshifts:
- **♦** Strong Lya
- ◆ He II 1640 line emission

• At low density $L(2\gamma) = 0.5(Ly\alpha)$

Н

 $L(Ly\alpha) \sim Q(H) * f_{coll}$

Case B

He

L(Hell 1640 Å) ~ Q(He+)

L(Lyα) CLOUDY / case B

Stellar population + nebular physics

 $L(Ly\alpha) \sim Q(H) * f_{coll} * < E > /13.6$

L(He II 1640 Å) CLOUDY / case B

Stellar population + nebular physics

He II 1640 Å equivalent width (CLOUDY)

2y continuum

hot ionizing source

resulting nebular emission

Search criteria

- Lyα emission
- Other emission line(s) to diagnose the ionization mechanism
- Rule out AGN (power law)
- Indicate high T_{eff}

Diagnostics

- Lyα He II dual emitters
- Hot stellar photoionization T_{eff} ~ 100kK
- Evidence for low nebular metallicity (but non-zero)
- NIV] 1483 + 86 Å high T_{eff} in the absence of N III] and N V
- Ionization by hot stars can result in a nebular spectrum (continuum approximately flat in fv and lines) that dominates the rest-frame UV-optical-NIR photometry

Conclusions

- Lyα: can be enhanced (especially for hot ionizing stars) can help to explain high EWs found in some surveys
- **2γ continuum:** enhanced in the same way, changes EWs of UV emission lines
- He II 1640 Å can be weaker than expected from synthesis models (maybe we need to observe deeper to detect it at high-z)
- Case B approximation might not be good in case of the nebular emission coming from the gas at high-z
- It is worth looking for other emission lines at high-z (to distinguish the ionization mechanism and determine the effective temperature of the source)

Future prospects

- Observations:
- emission line spectroscopy at high redshift, access to the restframe intercombination lines of C, N, O and Si
- PDR studies: [C II] line + other MIR cooling lines
- Theory:
- explain the enrichment process and create some general scenario (stellar winds, SNe)