

Surveying the Brightest Stars for Exoplanets with a Small Telescope in Space

Conference in Honor of Bob Fosbury Villa Aureli, Perugia, 23-25 May 2011

Zlatan Tsvetanov (JHU)

Rob Olling (UMD), Peter McCullough (STScI), Georgi Mandushev (Lowell Obs.), Harry Markov (NAO Rozhen)

Planet Hunting

- Methods of finding extra-solar planets
 - Indirect gravitational or photometric influence on host star
 - grav. tug on host star: RV (0.1-10 m/s), ASTR (3-300 μas)
 - special geometry: TRAN (0.01-1%, hours), ML
 - Direct (spatially) separate planet light from host star
 - reflected light (Opt) coronagraphic imaging
 - thermal radiation (MIR) interferometric imaging
- Current status >550 planets and counting (quickly)
 - RV most productive (~80%), limited utility (M_p •sin(i),P,e)
 - TRAN second most productive (~15%), best characterization $(M_p, R_p, P, e, T, atmosphere)$, limited for outer planets (rare events)
 - ML ~10 known, good for statistics, best sensitivity for small & outer planets, limited utility (can not repeat!)
 - DI few known, sensitive to outer planets (currently), high potential for characterization (colors, spectra)

Brighter is Better!

- Transits the best buy for the money!
 - TRAN+RV => key planet parameters: M_p , R_p , P, e, => mean density (planet composition)
 - "in-out" transit: photometry => temperature (*T*), temperature map; spectroscopy => atmospheric composition (H₂O, CH₄, CO₂, etc.)
- Biggest limitation problem: number of photons!
 - Effects are small: need very high S/N to measure transits, RV, TTV, astroseismology, etc.
 - Differential techniques require very high S/N, e.g., atmospheric effect is proportional to $2(hR_p/R_s^2) \le 10^{-5}$
- Exoplanets transiting bright stars are "crown jewels"
 - Allow high precision follow-up research with existing facilities, both ground- and space-based
 - Next suggested space project all sky survey for bright stars (<10^m)

STEREO Mission

- STEREO = Solar-Terrestrial Relations Observatory third mission of NASA's Solar Terrestrial Probes probes
- Prime objective: provide stereoscopic view of the Sun and of the CME as they propagate toward Earth
- Two identical spacecrafts on heliocentric orbit ahead and behind Earth
- SECCHI 5 instruments
 - Lyot coronagraphs: COR1, COR2
 - Heliospheric Imagers: HI-1, HI-2
 - Extreme UV imager: EUVI

STEREO Heliospheric Imagers

- HI externally occulted coronagraphs
- HI-1: 20° FOV, pointing ~14° from Sun-centre, ecliptic
- HI-2: 70° FOV, pointing ~54° from Sun-centre, ecliptic

HI-1 Images

Right: Major contributions to background

Left: typical HI-1 background.
Contours are 90, 50, 20, 10, 5, 2, 1% of peak

- HI images: background, stars, CME, planets, etc.
- Background: F+K corona, scattered light rejection level 1/10 below the zodiacal light (~10⁻¹³B_⊙)
- Stars: visible down to 12-13^m, for this project <10^m

HI mode of operation

- ♦ Mode of operation:
 - series of short exposures
- ♦ On-board image processing:
 - CR removal: pixels>5σ replaced with same from previous image;
 - Bias & trim;
 - Number of images added;
 - Binning 2x2

♦ Download:

 36 HI-1 images and 12 HI-2 transferred to Earth per day

	HI-1	HI-2
Individual exposure times	30 s	50 s
Exposure cadence	60 s	60 s
Number of images summed	40	99
Total exposure time	1200 s	4950 s
Exposure cadence	30 min	99 min
Summed image cadence	40 min	2 hours
		<u> </u>

- ♦ The choice of parameters listed in Table above leads to:
 - The brightest of the F-corona is ~60% of CCD dynamic range
 - Only stars <2.5^m are saturated
 - Drift of star field does not lead to a significant smearing

Star Input Catalog and Astrometry

Tycho 2, V < 9

- Use Tycho-2 catalog (99% complete to 11.5^m)
- This project input catalog: ~75,000 stars <10^m
- Improved astrometric solution: based on all Tycho-2 stars. Original solution good to 7° of center, but FOV=20°. New solution can locate stars to <0.1 pix across entire FOV.

Photometric Accuracy

<u>Left:</u> calculation for aperture photometry with r_{ap} = 3 px

• Included terms: total count rate from star (C_s , e-), background count rate (C_b , e-), detector read noise (RN=15 e-), number of pixels in aperture ($N_p=28$), number of detector reads ($N_r=40$), total exposure time ($T_{exp}=1200$ s)

Right: actual data – aperture photometry of ~3000 stars extracted from 30 days of HI-1A data. Low-frequency trends are removed by fitting low-order polynomials.

Transit Detection Sensitivity

For photometric series:

$$SNR_t = (d_t/\sigma)n_t^{1/2}$$

 d_t – transit depth

 σ – photometric error per data point

 n_t – total number of data points during transit

SNR for transit detection			
mag	Jupiter	Neptune	
3	600	90	
4	377	57	
5	155	23	
6	68	10	
7	28	4.2	
8	11	1.7	
9	4.5	<1	
10	1.8	<1	

Data in Table are estimates for two cases:

- 1. Typical hot-Jupiter Jupiter size planet transiting G-type star, P_t =3 d, d_t =0.01, T_t =3 h
- 2. Typical hot-Neptune depth of transit 1/8 of Jupiter, other assumptions same as for hot-Jupiter

The SNR_t is calculated for photometric data series produced from one pass through the HI-1 imagers only, i.e., over 40 days during one year (~1400 points). By now there are at least 4x as much data.

Expected Yield

	TESS	STEREO HI-1
Sky area covered	All sky (40,000 deg ²)	18% sky (7200 deg ²)
Number of stars	$\sim 2.5 \times 10^6$	~75,000
Magnitude range	4.5-13.5 (SDSS r)	2.5-10 (~600-720nm)
Transit periods, $P_{\rm t}$	1-30 days	1-20 days
Transit depth, d_t	0.0001-0.04	0.001-0.04
Transit duration, $\tau_{\rm t}$	0.02-0.5 days (0.5-12 h)	0.02-0.5 days (0.5-12 h)
Number of transits, n_t	≥ 3	≥ 3
Expected yields: planets	~1500 (J+N only)	~10-15 (J+N)
FP	~13000	~400+

- Expected yield estimated based on Brown & Latham (2008) as applied to TESS, a proposed all-sky transit survey
 - Integrating probability density of all classes of objects (real planet transits and false positives) in the range of interest for planetary transits (basically transit period P_t , transit duration τ_t , and transit depth d_t), scaled to the number of target stars.
 - Expected yield: planets=1/2300 stars, FP/planets=~10:1
- ♦ These estimates confirmed by:
 - CoRoT: (Almenara et al. 2009): yield 1/2100, real planets 12% (8:1 FP)
 - Kepler: better, but there is serious pre-selection

Transit-like events in real data

Can we see planet-like transits?

Yes, we can!

Over 100 new EB found. Data shown are from 20 day sequence of HI-1A images obtained in 2009. Not optimal flat-field correction is applied, detrending is very basic. LC are folded by orbital period, phases are arbitrary. Eclipses range from ~3.5% to <1%. Available data points are up to 7x more.

120

Many false-positives ...

- ♦ A typical chance projection of EB
 there is a known 3 mag fainter
 X-ray EB right at the edge of photometric aperture ...
- ♦ Another EB likely a small star transiting a giant one, so many of the characteristics are similar to a planet transit …

Follow-up Program

- Primary goal rejection of false positive (FP) events and characterization of exoplanets
- Access to telescope time at several observatories with relevant instrumentation APO (3.5m, R=30,000 Echelle, NIR & Opt. imagers), Lowell Observatory (31", 42", 72", imaging cameras), NAO Rozhen (2m, Coude, R=30,000, 60cm photometry)
- ♦ Secondary goal follow-up study of EB
 - Large number new EB (>100),
 eclipse depth from ~50% to
 <1%, many spectral types,
 several very interesting cases

Data for HD 103694 (V=9.5), a newly discovered EB of late K dwarfs. LC is form data sequence of HI-1A images. RV curve is from spectra obtained at APO (US) and NAO Rozhen (Bulgaria).

RV Selected Exoplanets

- ♦ There are over 50 stars with RV discovered planets in the STEREO area of the sky and with V<10^m
- Planets periods vary from a few days to hundreds days
- ♦ Data from one detector (HI-1A) and are extracted
- Initial inspection shows no obvious transits at the RV periods
- Up to 5x more data exists and more corrections need to be applied

