Radio galaxies and their environment at 1<z<2 (and beyond...)

Joël Vernet (ESO)

Carlos De Breuck, Audrey Galametz, Jack Mayo, Dan Stern,
Nick Seymour, and the SHizRaG team

Radio galaxies and their environment at 1<z<2 (and beyond...)

Joël Vernet (ESO)

Carlos De Breuck, Audrey Galametz, Jack Mayo, Dan Stern,
Nick Seymour, and the SHizRaG team

Why around RG?

Among the largest, most luminous, most massive galaxies at every epoch

Progenitors of gE and cD

Exist from z=0 to z>5

Environment of High Redshift Radio Galaxies

Narrow line emitters searches

(narrow band imaging+spectroscopic confirmation, led by G. Miley and coll.)

Pros: redshifts is known, little contamination form interlopers

Cons: samples only a small fraction of the total mass of the proto-cluster

Much less done on search for evolved (red sequence) galaxies around RGs

Ex: The SpiderWeb galaxy
The most studied protocluster at z>2

Ly \times and H \times emitters, EROs, Lyman break galaxies
... And now massive red cluster members

Environment of High Redshift Radio Galaxies

Near infrared imaging + colour criteria (eg. J-K>2.3) to select more massive components tat would populated the red sequence

The sample

Cover the radio luminosity - redshift plane as uniformly as possible in the range 1 < z < 4, covering two orders of magnitude in radio luminosity

Sample chosen to maximize number of supporting observations without biasing

Optical/near-IR imaging and spectroscopy+polarimetry

Spitzer (3.6, 4.5, 5.8, 8.0, 16 and 24 μ m)

Hershel (70/100, 160, 250, 350 and 500 μm)

Solid symbols - HzRGs in our Spitzer sample with IRAC/IRS imaging

Large circles - MIPS observations as wel

Filled circles - HzRGs with HST data

Filled squares - HzRGs with SCUBA data

Plusses - parent sample of 225 HzRGs from which our sample of 70 was drawn

CFHT / WIRCAM

VLT / Hawk-I

Sample of 10 HzRGs with 1.7<z<2.5

MRC 1017-220 (z=1.77) MRC 0156-252 (z=2.02)

MRC 1324-262 (z=2.28) USS 1425-148 (z=2.35)

MRC 0406-244 (z=2.43) MG 2308+0336 (z=2.46)

MRC 2104-242 (z=2.49) MRC 2139-292 (z=2.55)

MRC 0324-228 (z=1.89) MRC 0350-279 (1.90)

Observed in YHK or JHK with HAWK-I to bracket the 4000Å break

CFHT / WIRCAM

VLT / Hawk-I

Sample of 10 HzRGs with 1.7<z<2.5

MRC 1017-220 (z=1.77) MRC 0156-252 (z=2.02)

MRC 1324-262 (z=2.28) USS 1425-148 (z=2.35)

MRC 0406-244 (z=2.43) MG 2308+0336 (z=2.46)

MRC 2104-242 (z=2.49) MRC 2139-292 (z=2.55)

MRC 0324-228 (z=1.89) MRC 0350-279 (1.90)

Observed in YHK or JHK with HAWK-I to bracket the 4000Å break

CFHT / WIRCAM

VLT / Hawk-I

Sample of 10 HzRGs with 1.7<z<2.5

MRC 1017-220 (z=1.77) MRC 0156-252 (z=2.02)

MRC 1324-262 (z=2.28) USS 1425-148 (z=2.35)

MRC 0406-244 (z=2.43) MG 2308+0336 (z=2.46)

MRC 2104-242 (z=2.49) MRC 2139-292 (z=2.55)

MRC 0324-228 (z=1.89) MRC 0350-279 (1.90)

Observed in YHK or JHK with HAWK-I to bracket the 4000Å break

redshift 1.5

redshift 2

```
7C1756+6520 (z=1.416)
7C1751+6809 (z=1.54)
```

- Bb & z band Palomar/LFC
- J & Ks bands CFHT/WIRCam

Large scale (15'x15')

MRC1017-220 (z=1.77) MRC0156-252 (z=2.02)

YHK bands – VLT/HAWK-I

Large scale (7.5'x7.5')

- Extraction of source catalogues
- Design of modified/new colour criteria
- Tests on colour criteria
- Selection of cluster member candidates
- Detection of overdensities / compare to large field surveys
- Color magnitude diagrams

redshift 1.5

redshift 1.5

redshift 1.5

redshift 1.5

redshift 1.5

Comparison with control fields

GOODS-S field GOODS-MUSIC catalogue (Santini et al. 2009)

MUSYC fields (Gawiser et al. 2006)
4 fields
~ 1400 sq. arcmin

No overdensity around 7C1751+6809

7C1756 - overdense in red galaxies (factor 2)
- consistent in blue galaxies
- within 2', overdense in red (factor 5)
and blue galaxies (factor 2)

Also an overdensity of mid-IR selected AGN

redshift 1.5

Comparison with control fields

GOODS-S field GOODS-MUSIC catalogue (Santini et al. 2009)

MUSYC fields (Gawiser et al. 2006)
4 fields
~ 1400 sq. arcmin

No overdensity around 7C1751+6809

7C1756 - overdense in red galaxies (factor 2)
- consistent in blue galaxies
- within 2', overdense in red (factor 5)
and blue galaxies (factor 2)

Also an overdensity of mid-IR selected AGN

7C 1756

7C 1751

redshift 1.5

Comparison with control fields

GOODS-S field GOODS-MUSIC catalogue (Santini et al. 2009)

MUSYC fields (Gawiser et al. 2006)
4 fields
~ 1400 sq. arcmin

No overdensity around 7C1751+6809

7C1756 - overdense in red galaxies (factor 2)
- consistent in blue galaxies
- within 2', overdense in red (factor 5)
and blue galaxies (factor 2)

Also an overdensity of mid-IR selected AGN

redshift 2

Comparison with control fields

GOODS-S:

2 HAWK-I pointings

1 Control field:

1 HAWK-I pointing (CF)

A galaxy sheet at z=1.6 in GOODS-S

(z=1.61) Kurk et al. 2009

Compact concentration of both red and blue sources within 1Mpc of MRC0156-252

redshift 2

Comparison with control fields

GOODS-S:

2 HAWK-I pointings

1 Control field:

1 HAWK-I pointing (CF)

No overdensity around MRC1017-220

MRC0156-252 - densest field in red galaxies (x3.2 1017 and x1.6 GOODS-S)

- Even denser at z<2' (x3.9 with 1017)
- slightly denser in blue galaxies (x1.5-2)

Compact concentration of both red and blue sources within 1Mpc of MRC0156-252

Color-magnitude diagrams redshift 1.5 redshift 2

Red galaxies colours consistent
 with red sequence models at zf>2
 Truncation at K_{AB}>21

Red galaxies colours consistent with red sequence models at zf>3
Structure similar to PKS1138-262

Color-magnitude diagrams redshift 2

• Red galaxies colours consistent with red sequence models at zf>2 • Truncation at K_{AB} >21

Red galaxies colours consistent with red sequence models at zf>3
Structure similar to PKS1138-262

Spectroscopic confirmation of a z=1.42 cluster

Galametz et al. 2010b

Follow-up of the overdensity around 7C1756+6520 with Keck/Deimos

129 BzK galaxies: 82 sBzK & 47 pBzK*

11 AGN candidates + 7C 1756+6520

Redshifts obtained for

36 sBzK

7 pBzK*

9 AGN + 7C 1756+6520 (z=1.4156)

Spectroscopic confirmation of a z=1.42 cluster

20 galaxies within $\Delta v < 3000 \text{ km/s}$:

- 10 sBzK galaxies
- 3 pBzK galaxies
- 4 AGN
- 3 serendipitous

Spectroscopic confirmation of a z=1.42 cluster

Now on the whole sample...

- Clear diversity. Some fields are overdense, others not...
- 2 studies on the whole sample:
 - IRAC Ch. 1 & 2
 - MIPS 24µm
 - Comparison with SWIRE, shallow but a good match to our data
 - Have a statistical measurement + identify good candidates

The passive neighborhood

Galametz et al., submitted to ApJ

 $3.6 \mu m$ - $4.5 \mu m$ > -0.1 isolates galaxies at z>1

The passive neighborhood

Galametz et al., submitted to ApJ

 $3.6 \mu m$ - $4.5 \mu m$ > -0.1 isolates galaxies at z>1

- Counts in cells
- Compare to wide area blank fields from SWIRE
- 11 fields > 2sig overdensity
- 6 of these were known overdensties,
 5 new
- some targets with known
 overdensity of line emitters do not stand out here but...

The active neighborhood

Mayo et al., in prep

At 24 µm
Active galaxies
SF with PAHs &
AGN thermal

- Cut to the same depth
- Count in 3'x3'cells
- Reference wide area blank fields from SWIRE

Conclusions

- RG in general live in denser than average environment
- But this environment is very diverse:
 - Example, 4c40.36 and PKS1138-262, about the same redshift (same selection effects), one is overdense in active objects, the other in passive ones
 - An indication for some weak correlation with radio power (higher density of passive galaxies around more powerful galaxies)
- Any difference between Radio loud and radio quiet AGN neighborhood (CARLA project)?

