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P0 = [0] , Q0 = [1] ;

Pn+1 =
[

Qn +1 Pn +2
Pn Qn +1

]
, Qn+1 =

[
Pn +1 Qn +2

Qn Pn +1

]
.
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How to equitably share a volume, e.g. a “salami”?

Suppose you are given a salami and a knife and have to distribute an equal
share of this Italian speciality between two persons, say A and B.
The salami is indeed irregular, but you know that the quantity Q(x) cut at
abscissa x is a polynomial1 Pn(x) of degree n.

The only information about the polynomial is n its degree, you don’t know the
polynomial coefficients.

1Note that because of the Taylor expansion, many quantities can be accurately approximated
by polynomials.
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Solution by induction, order 1
First observation: Q(x) is an increasing function of x (there is nothing like a
negative salami) i.e. n≥ 1.
If n = 1, the solution is: cut two slices of equal thickness h; give one to A, say
the first one, and the second to B.

In fact Q′(x) = c0 = constant and

Q1(A) =
Z h

0
Q′(x)dx =

Z 2h

h
Q′(x)dx = Q1(B) .
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Solution order n

Now suppose we know how to share the volume up to degree n. Maybe we
distributed many slices up to a quantity corresponding to a total thickness H.

Introducing the discrepancy Λ between the share of A and the share of B, we
have

Λ =
Z

A
Q′(x)dx−

Z
B

Q′(x)dx = 0 .
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Solution order n+1
If Q(x) = Pn+1(x), we have Q′(x) = cnxn +pn−1(x). If we apply to case n+1
the same slicing strategy as for case n, we will commit a error that will only
depend on cn the coefficient of the term of highest degree.
But this coefficient is invariant under translation, we have for example

cn(x+H)n = cnxn +(polynomial of degree n−1) .

Therefore, if we continue after H the same slicing strategy, but attributing to B
that was given to A and vice versa, we compensate this way the excess or
deficiency generated by the previous cutting. Our problem is solved.
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The Prouhet-Thue-Morse sequence

The solution is then: If Q(x) is of degree n, cut 2n slices of equal thickness h
and distribute them between A and B following the sequence:

n = 1, AB;

n = 2, ABBA;

n = 3, ABBABAAB;

n = 4, ABBABAABBAABABBA etc.

We have generated the celebrated Prouhet-Thue-Morse sequence which
possesses many interesting properties and applications.
Surprisingly, even in astrophysics...
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Sky background subtraction
Suppose one has to observe, say a galaxy in IR, against a sky background.
The usual procedure is to achieve a pose of type A on the galaxy, which
includes the sky background, and a second pose of type B on the sky only.
That is

A = galaxy+ sky , B = sky .

If the sky background is constant, we obtain the galaxy by a simple subtraction.

galaxy = A−B .

Now, if the sky varies with time according to a polynomial of order n, one gets
rid of the sky by planning observations according to the Prouhet-Thue-Morse
sequence and performing the operation

galaxy = ∑A−∑B .

For instance, if n = 1, it is better to do ABBA rather than ABAB.
If n = 2, the sky varies quadratically, the poses should be ABBABAAB.
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Multigrad multiplets

If Q(x) is of degree n, Q′(x) is of degree n−1 and dn

dxn Q′(x) = 0. One can
replace the derivative by its finite difference operator, which is exact up to
degree n and will be zero for polynomial of degree n−1. If we set h = 1 and
−1 for A and +1 for B, the Prouhet-Thue-Morse sequence is just the sequence
of the coefficients of a finite difference operator of degree n.
One can therefore solve some kind of diophantine equations of the form :

N

∑
k=1

pr
k =

N

∑
k=1

qr
k , forr = 1, . . . ,n .

For example, for n = 2 and the integer sequence 12345678, we get

1+4+6+7 = 2+3+5+8 = 18 ,

12 +42 +62 +72 = 22 +32 +52 +82 = 102 .

For short {1,4,6,7} 2= {2,3,5,8}.
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The Bracewell nulling interferometer
Principle
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Bio-tracers are the absorption bands of: O3, H2O et CO2, in
the thermal IR on a 6µm-17µm bandwidth.
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Doing spectroscopy with the Bracewell nulling interferometer
Limitations

The phase shift of π is obtained by adding an optical path difference (opd)
of λ0/2 on one arm of the interferometer.

The light from the star will be cancelled only for the wavelengths that are
odd multiple of λ0/2.

The interference will be constructive, for the planet, only if the angle of
sight θ induce a supplementary opd which is an even multiple of λ0/2.

The device is chromatic. It fails to cancel the starlight within the full useful
bandwidth: 6µm-17µm.
There remains a residual stellar light whose amplitude depends upon
wavelength: the chromatic function Λ. film2D31
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How to cancel Λ?

The idea is to divide the wavefront, like the salami, into many sub-pupils by two
“chessboards” of cells each assigned to a certain opd.

P (even pupil) Q (odd pupil)

opd = 2k×λ0/2 opd = (2k +1)×λ0/2
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Michelson setting (uniaxial)
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Fizeau setting (multiaxial)
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The iterative Bracewell interferometer

The effect of the cells, upon the interferometer PSF, depends on their intrinsic
opd’s, their positions and their shape. We neglect below their positions (super
Michelson) and the shape does not matter very much (sinc).
The Bracewell interferometer is fully destructive for wavelength λ = λ0. We
have the amplitude

Λ = 1+(−1) = 0 .

For λ 6= λ0, we get
Λ = 1+(−1)λ0/λ 6= 0 .

If we set (−1)λ0/λ ≡ eiπλ0/λ = z, we get Λ = 1+ z. That is λ = λ0 induce a root
of order one on Λ. One way to obtain a shallow chromatic function around λ0 is
to have a multiple root. That is

Λ = (1+ z)n .

The higher n the deeper the nulling around λ0.
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The achromatic virtues of Pascal’s triangle.
This procedure generates opd’s in number according to the binomial
coefficients. For n = 3, we get (1+ z)3 = 1+3z+3z2 + z3, producing 1 opd of
0, 3 of λ0/2, 3 of 2λ0/2 and 1 of 3λ0/2. In order to take avantage of the
off-axis planet “trick”, we arrange the even opd’s on one chessboard and the
odd ones on the other.
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Binomial coefficients integer sequences are multigrad

Indeed Λ is a polynomial upon z, but not upon λ. However because z =−1 is a
root of order n, the Taylor expansion of Λ upon λ will be cancelled up to its
(n−1)-th order. This can also be seen by using the multigrad theorem

If {pN}
n= {qN}, then {pN ,qN + c} n+1= {qN ,pN + c} .

Starting with {0} 0= {1} and with c = 1, we generate a binomial coefficient

sequence of integer: {0,2} 1= {1,1}, {0,2,2,2} 2= {1,1,1,3}, etc.
Indeed

0+2+2+2 = 1+1+1+3

02 +22 +22 +22 = 12 +12 +12 +32 .

A binomial coefficient sequence of integers is a compact version of the
Prouhet-Thue-Morse sequence. It will solve the salami problem if we were
given many identical salamis.
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Intrinsic values of the iterative Bracewell interferometer opd’s

Our interferometer of order r = 0 is the original Bracewell one {0} 0= {1}. If
{pr} stands for the opd’s set, divided by λ0/2, on the even pupil and {qr} for
the odd ones, one obtains the next order by two applications of the mutigrad
theorem (in such a way, the number of cells in each pupils remains a square).

{pr+1}= {pr,qr +1,qr +1,pr +2} ,

{qr+1}= {qr,pr +1,pr +1,qr +2} ,

{pr+1}
2r+2= {qr+1} .

But we still don’t know where to place the cells on the even and odd pupils.
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Arrangement of the cells on the pupils
Lets call Pr and Qr the physical arrangement of the phase shifters whose
values are given by the two sets {pr} and {qr}.
Detailed analytical work shows that in order to preserve, as far as possible, the
nulling power of the device, the cells must be placed in such a way that Pr−Qr

is a finite difference differential operator of high order acting on the spatial
repartition of the light on the focal plane.
One can achieve this objective with the following iterative arrangement

Pr+1 =
[

Qr +1 Pn +2
Pr Qr +1

]
, Qr+1 =

[
Pr +1 Qn +2

Qr Pr +1

]
.

In fact, at first stage we get a gradient, and the process continues on

P1−Q1 =
[

2 2
0 2

]
−

[
1 3
1 1

]
=

[
+1 −1
−1 +1

]
,

Pr+1−Qr+1 =
[

Qr−Pr Pr−Qr

Pr−Qr Qr−Pr

]
.

D. Pelat (Observatoire de Paris) Arithmetics and Interferometry
Villa Aureli, may 25th 2011, 16h 30–17h 20 /

26



Michelson setting order r = 2, i.e. (1+ z)5

Even P2 pupil Odd Q2 pupil
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Fizeau (P∗r ,Q
∗
r ) chessboards, e.g. r = 3

The Fizeau chessboard are axisymmetric version of the Michelson ones.
The electric field in the focal plane is canceled, at λ = λ0, by a single mode
optical fiber.
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The “Damned” optical bench
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Global properties

As shown in the table below, Fizeau chessboards retain most optimal
properties of Michelson ones.

Type n0×n0 Chromatic nul n Spatial nul
co-axial (Pr,Qr) 2r×2r 2r r−1

multi-axial (P∗r ,Q
∗
r ) 2r×2r 2r−1 r−2, if r even

r−1, if r odd

Useful nulling bandwidth : 2
3 λ0,2λ0, e.g. ∆λ = (6µm,18µm) for λ0 = 9µm.

The following graphs show the performances of the devices. The colors
indicate the increasing r orders. Order r = 7 (orange) meets the Darwin space
project specifications.
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film2D31 film2D32
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