

PEARS 2D: Finding star forming galaxies in slitless surveys

N. Pirzkal, Malhotra, Rhoads, Ly, Rothberg, Straughn, and the PEARS Oompa-Loompas

GRISM and HST

- HST is a good environment for spectroscopy:
 - Stable optical system and PSF
 - Lower sky background
- * Slitless spectroscopy available to HST users since the beginning (WFPC1) and on nearly all instruments since (STIS, NICMOS, ACS, WFC3)
- First regular use of slitless grism was with NICMOS: IR spectroscopy but small field of view
- Dramatic increase of grism use with ACS (optical) and now WFC3 (NIR). In fact, HST has more orbits allocated to spectroscopy than imaging!

ACS G800L:

- * Large field of view (11.5 arcmin²)
- * 40 Å/pix resolution
- High sensitivity:
 - * continuum detection down to $Z_{AB}>27$
 - * Emission lines down to few 10⁻¹⁸ erg/s/cm²

PEARS: Il Buono

- Large field of view: several arcmin²
- Broad wavelength coverage: broad uninterrupted redshift coverage
- * High multiplexing: several hundreds of spectra per exposure
- Low, stable background
- Stable dispersion and characteristics
- High sensitivity

PEARS: Il Cattivo

- * No slits: blending of nearby sources, contamination, multiple orders
- Extraction and calibration requires some *care*

* What you gain with HST with low background you loose with lack of

slit

- Low resolution (R~100)
- Difficult flux calibration (few % at best)

PEARS: Il Brutto

- * Standard extraction based on object catalogs. This defines wavelength calibration and to some extend the flux calibration.
- * No slit, so must pick a reference, e.g. object centroid
- Wavelength and flux calibration does not account for "selfcontamination": different parts of complex resolved objects are all blended together
- Multiple emission line regions are all blended together in resolved objects

- Catalog driven
- Centers the extraction of the center of the source
- Look for lines in extracted spectra
- But this is not optimal in cases of:
 - Extended objects
 - Faint emission lines

- Catalog driven
- Centers the extraction of the center of the source
- Look for lines in extracted spectra
- But this is not optimal in cases of:
 - Extended objects
 - Faint emission lines

- Catalog driven
- Centers the extraction of the center of the source
- Look for lines in extracted spectra
- * But this is not optimal in cases of:
 - Extended objects
 - Faint emission lines

- Catalog driven
- Centers the extraction of the center of the source
- Look for lines in extracted spectra
- * But this is not optimal in cases of:
 - Extended objects
 - Faint emission lines

- Catalog driven
- Centers the extraction of the center of the source
- Look for lines in extracted spectra
- * But this is not optimal in cases of:
 - Extended objects
 - Faint emission lines

PEARS 2D: Line search with multiple orients

PEARS 2D: Line search with multiple orients

PEARS 2D: Line search with multiple orients

PEARS-2D Line Search:

- Object catalog independent extraction
- Relies on observations taken using multiple orientations on the sky
- Fully utilizes knowledge of disperser properties:
 - Combine all available data at a given position angle
 - Smooth and subtract
 - Detect emission and break features in 2D continuum subtracted image
 - Generate a catalog of candidate lines at each orientation

PEARS-2D Line Search:

- * Use candidates found using 2 or more orientations to determine the origin of the feature on the sky (knot).
- Perform optimal slitless extraction of each knot:
 - One extraction per available orientation
- Search for emission lines aggressively in 2D images
- Weed out false positive with manual grading R
- Reach very low line luminosities

z=0.2 $H\alpha 7x10^{-17} erg/s/cm^2$ $z_{AB}=21.09$

z=0.2 $H\alpha 7x10^{-17} erg/s/cm^2$ $z_{AB}=21.09$

Monday, June 6, 2011

z=0.1H $\alpha 1x10^{-17} \, erg/s/cm^2$ $z_{AB}=19.77$

Monday, June 6, 2011

Monday, June 6, 2011

z=0.3 $H\alpha 1.5x10^{-17} erg/s/cm^2$ $z_{AB}=23.86$

PEARS

- "Probing Evolution And Reionization Spectroscopically"
- * 9 fields, 4 in GOODS-N, 5 in GOODS-S
- * 20 orbits/field
- * 100 arcmin²
- > 10,000 spectra extracted "normally"
- Object-based extraction available at <u>http://archive.stsci.edu/prepds/</u> <u>pears/</u>

PEARS 2D Emission Lines

- * H α detected in objects as faint at $z_{AB} = 27.1$
- * Lines with fluxes as faint as 5 10⁻¹⁸ erg/s/cm² are found
- * 793 emission lines, ~1.5x 1D method
 - * 213 Ha (S: 109, N:104) 0<z<0.5
 - * 297 OIII (S:166, N:131) 0.2<z<1.0
 - * 196 OII (S:101, N:95) 0.6<z<1.7
 - * 74 Hg (S:44,N:30) 0.4<z<1.3
 - * 13 Lya (S:10,N:3) 3.9<z<7.2

PEARS 2D Emission Lines

Host sources down to z_{AB}~28

But, average EW_o>~50 Å cutoff

PEARS 2D Emission Lines Objects vs. Knots

- * 793 lines in total:
 - * 582 objects:
 - * 446 single knots, 125 double knots, 9 triple knots, 2 quadruple knots
 - * 647 knots:
 - * 510 single line, 128 double (OII+OIII or OIII+Hα), 9 triple (OII +Hγ+OIII)

PEARS 2D Emission: Lines Line Identifications

- * When more than one line is present, identifying the lines is relatively straight forward
- Single emission line rely on specz probabilities to determine the most likely candidate
- We limit ourselves to the common lines of Lyα, Hα, Hγ,
 OII, and OIII

PEARS 2D Emission: Sanity Checks

- We have objects that were observed more than once
- We have objects with more than one star forming region
- * How consistent are our line identifications and redshifts?:
 - Good self consistency:
 - Object with multiple knots: dz=0.01
 - Objects observed in two PEARS fields:
 - * $\delta z = 0.002$
 - δ flux $\sim < 10\%$
 - * $\delta lam < 20 \text{ Å}$
 - * δ pix knot position < 1 pixel (0.030")

PEARS 2D Emission: Luminosity Functions

- Examine luminosity functions over continuous ranges of redshift
- * 1/Vmax (somewhat bin size sensitive)
- Maximum likelihood method (e.g. STY, φ* not constrained)

$$\Phi(\log L_i) = \frac{1}{\Delta \log L} \sum_j \frac{1}{V_i}$$

V_i: maximum volume over which object would be detected

$$\Phi(L)dL = \phi_{\star} \left(\frac{L}{L_{\star}}\right)^{\alpha} \exp\left(-\frac{L}{L_{\star}}\right) \frac{dL}{L_{\star}} \qquad \alpha < 0$$

L<<L*: power law

L>>L*: exponentially decaying

PEARS 2D φ(L): North vs. South

- PEARS-N vs. PEARS-S:
 No major comic variance despite the small field sizes
- We do not constrain the "knee" of the LF (L*)

PEARS 2D: $H\alpha \phi(L) 0 < z < 0.5$

PEARS 2D $\phi_{H\alpha}(L)$: z evolution

- * Fit a Schechter function fit in increasing redshift bins
- Tentative steepening of the luminosity function from z=0 to z=.5?

PEARS 2D ϕ Ha(L): z evolution

- * Fit a Schechter function fit in increasing redshift bins
- Tentative steepening of the luminosity function from z=0 to z=.5?

PEARS 2D ϕ Ha(L): z evolution

- * Fit a Schechter function fit in increasing redshift bins
- Tentative steepening of the luminosity function from z=0 to z=.5?

Conclusion

- Object-independent identification of emission line "knots" and galaxies
- Allows to individually extract the spectra of star forming regions in resolved objects
- * Reaches down to very faint line fluxes with moderate efforts (few x 10⁻¹⁸ erg/s/cm²)
- * Constraints the faint end of the lum. fct. for $H\alpha$, OII and OIII
- * Luminosity functions for H α over continuum redshift range of 0 < z < 0.5 over 100 arcmin²
- * Confirm the possible steepening of the lum. fct as a function of z