The High-Resolution Case Against Late Reionization (and for Radiative Transfer)

George Becker

H I Survival June 11, 2007

Reionization - Two limits

Early CMB

$$\tau_e = 0.09 \pm 0.03$$

Spergel et al. (2006)

<u>Late</u> Transmission in Lyα forest

IGM must be highly ionized at z < 6

Best evidence for late reionization

Fan et al. (2006)

Mean flux measurements

Lya-emitting galaxies

Hu & Cowie (2006)

Dijkstra et al. (2006): Evolution in LF can be entirely attributed to evolution in DM halo mass function and cosmic expansion.

Transmitted flux at z > 6

White et al. (2003)

Patchy reionization?

The High-res, High-z sample

II QSOs at 4.9 < z < 6.4

Full sample: 58 QSOs at 2 < z < 6.4

Flux distributions

- Models give you $P_{\tau}(\tau) \longrightarrow P_{F}(F)$
- Test two theoretical T distributions
 - I. Numerical simulation with simple assumptions
 - Miralda-Escudé et al. 2000 (MHR00)
 - Used to infer late reionization
 - uniform UVBG + isothernal IGM

2. Lognormal

- Could arise from either a lognormal density distribution OR from non-uniform temperatures and/or ionization rates
- * Must use high-resolution data

Optical depth Flux Flux with noise

MHR00 Model Lognormal

Example Flux PDF fit

Continuum fixed
Continuum variable

__ "Best fit" continua

More Flux PDF fits

MHR00 model fits require a QSO continuum adjustment.

MHR00 Model

Lognormal

Continuum fixed

Continuum variable

Evolution of Lognormal Parameters

Mean transmitted flux (I)

Mean transmitted flux (2)

Data

z > 4.9 Fan et al. (2006) 2.4 < z < 4.9 Songaila (2004) 1.6 < z < 3.2 Kirkman et al. (2005) PDF Fit to z < 5.4

---- power law fit to z < 5.7

Mean transmitted flux (3)

An inverse T-p relation?

- The density distribution from simulations is probably correct.
- Optical depths depend on T, Γ

$$\tau(\Delta) \propto \frac{(1+z)^{4.5} (\Omega_{\rm b} h^2)^2 \alpha [T(\Delta)]}{h \Gamma(\Delta, z) \Omega_{\rm m}^{0.5}} \Delta^2$$

- "Equation of state" $T(\Delta) \propto \Delta^{\gamma-1}$
 - Expect $1 \le \gamma \le 1.6$
- ullet Get very good fits with $\gamma \sim 0.5$
- Radiative transfer effects (e.g., Bolton et al 2004)? He II heating?

MHR00 model: Isothermal Non-isothermal

Radiative Transfer Effects

Higher-energy photons have longer mean free path.

Increased photoionization heating vs. uniform radiation field.

The "Problem" with Quasars

GRBs as IGM probes

GRB050730 (z = 3.96)

- GRBs have power-law continua
- "Objectively" measure low-density IGM
- Must be able to fluxcalibrate high-resolution spectra
- Divide out associated absorption

Use low-resolution spectrum to flux-calibrate the high-resolution spectrum...

GRB050730 MIKE Spectrum

- Calibrate MIKE data with LRIS data
- GRB spectrum looks like quasar spectra (QSO continua OK?)
- Voids at z~4 do appear more transparent than numerical simulations predict. Heating from radiate transfer effects?

Enough Ionizing Photons to Reionize by z~6?

Massive stars produced \geq 2-20 ionizing photons/baryon by z = 6

Conclusions

- The simple model for the Lyα forest that has been used to make claims of late reionization does not match high-resolution data, especially at low optical depths (voids).
 - Better simulation and/or better data calibration may be needed.
- Empirically, the Ly α forest evolves smoothly over 1.6 < z < 6.2.
 - A sudden change due to late reionization is not required.
- If the density distribution from simulations is correct, then fluctuations in the UV background and/or IGM temperature may be required to produce the correct flux PDF.
 - Inverse temperature-density relation at low densities?