Molecular Gas in Primitive Systems: Lessons from the Local Universe

Alberto Bolatto
U.C. Berkeley
Radio Lab

Adam Leroy
Fabian Walter
Leo Blitz
Erik Rosolowsky
Josh Simon
the S³MC/S⁴MC collaboration

Outline

- 1. Resolved molecular cloud properties in nearby primitive systems: the extragalactic Larson Laws
- 2. The Schmidt Law in the Small Magellanic Cloud

How well do we understand the link between gas and star formation?

 $HI \rightarrow H_2 \rightarrow stars$

The Kennicutt-Schmidt law predicts 10 to 30 times more SF than observed in DLAs

Wolfe & Chen (2006)

The elusive molecules

- Molecular gas surveys show that HI-rich dwarfs are faint in CO
- Despite active star formation, no galaxies with Z<1/5 Z_o are detected in CO
- This is understood as enhanced photo-dissociation of CO, due to diminishing dust UV shielding

Maloney & Black (1988); Bolatto et al. (1999); Röllig et al. (2006)

GMCs in dwarf galaxies

Leroy, Bolatto, Walter, & Blitz (2006)

- We can resolve individual GMCs only in nearby dwarf galaxies
 - $R \sim 10 50 \text{ pc}$
 - GMCs are frequently found along HI filaments
 - Limited by S/N and resolution
- Consistent extragalactic
 GMC properties require
 correcting for
 observational biases
- Poorly done in the literature (see Rosolowsky & Leroy 2006)

The size-linewidth relation

- Maintained by frequent turbulent energy injection on large scales (MRI, SNe, gravothermal instability)
- $\sigma = 0.72 \, R^{0.5}$

Milky Way sample by Solomon et al. 1987

The size-linewidth relation

- Maintained by frequent turbulent energy injection on large scales (MRI, SNe, gravothermal instability)
- $\sigma = 0.72 \, R^{0.5}$
- If virial equilibrium is assumed $M \sim R\sigma^2$, $\Sigma_{H2} \sim 170 \text{ M}_{\odot}/\text{pc}^2$ for all galaxies!
- Three galaxies seem not quite consistent:
 - NGC 1569, problematic data
 - SMC and IC10, 50-100% under the standard relation
- Density? Magnetic field? Not in equilibrium?

Milky Way sample by Solomon et al. 1987

Photoionization-regulated star formation?

- Star forming clouds need similar extinctions at their centers to decouple from magnetic support and collapse (McKee 1989)
- Theory predicts σ =0.72 (Av/7.5 d_{gr})^{-0.5} R^{-0.5}
- Measurements show no evidence for that trend

Star formation and molecular gas

- Very nearby, "SMC-like", dwarfs show much less H₂ per stellar mass than massive systems
- These dwarfs are not just scaled down versions of larger galaxies:
- The M_{mol} M_{*} relation is changing
- 2. M_{mol} accounting problem: need larger Xco

 $NH_2 = Xco Ico$

Leroy, Bolatto, Simon, & Blitz (2005); Leroy, Walter, Bolatto, et al. (2007)

Star formation and molecular gas content

- "Massive" dwarfs look like larger galaxies with Galactic Xco
- "SMC-like" dwarfs are again clearly outside the correlation

Unchanging Xco?

- The luminosity-virial mass relation is entirely compatible with that of the Galaxy (Solomon et al. 1987)
- No marked trend with galaxy metallicity in the ratio of virial to luminous mass
- Does this mean that star formation is much more efficient for "SMC-like" dwarfs?

Obtaining an H₂ map from the FIR

- Used 100 and 160 um to avoid influence of stochastic heating
- More than one temperature component. Used Dale & Helou (2000) models
- DGR determined locally
 - DGR_{AVE}~1:900, DGR_{BAR}~1:800, DGR_{WING}~1:1200
- M_{H2}~3x10⁷ M_{sun} total molecular mass, compared to M_{HI}~2x10⁸ M_{sun}

Remarkably similar to the MW and other large spirals

Leroy, Bolatto, et al. (2007)

CO and H₂ profiles

- H₂ is 30% more extended than CO
- Surface densities are similar to MW
 - Considerably lower
 than predictions from photoionization regulated star
 formation theory:
 - Expect 500-3000
 M_{sun}/pc² (A_v~4-8)
 - Find 180 M_{sun}/pc^2 ($A_v \sim 1-2$)
- Systematically smaller/clumpier clouds could rescue the theory

Leroy, Bolatto, et al. (2007)

Back again to the Molecular Schmidt Law

- Conundrum: "SMC-like" dwarfs have anomalously high SFR for their CO content
- Virial CO properties are very similar
- Dust results point to a x50 increase to Xco in the SMC
- Extra H₂ is in cloud envelopes

Despite differences in metallicity and rotational properties, there is no evidence for a change in the "Molecular Schmidt Law" for small galaxies

Conclusions

- Larson Laws in small, low metallicity dwarf galaxies are very similar to the Milky Way
 - Is this the foundation for an invariant IMF?
- Dust continuum studies suggest that the CO cores in these primitive galaxies are surrounded by large H₂ envelopes, and there is a wealth of molecular gas not traced by CO
- Once this is taken into account, these galaxies will likely fall on the molecular Schmidt Law
- Many problems for photoionization-regulated star formation theory
 - No increase in velocity dispersion for decreasing metallicity
 - No increase in ∑ for decreasing metallicity
 - How can gas invisible in CO partake in star formation?

SNR and dust production

- O-rich, type Ib/c, age~1000-2000 yr
- Progenitor: M>20 Msun, rich in O, Ne, and Mg

- For dust mixed in SNR expect T~130 K (Dwek 1987)
 - Our data is consistent with T_{dust}~120 K
- Models predict 0.08 to 0.3 Msun of dust produced per SN (Dwek & Scalo 1980; Todini & Ferrara 2001; Morgan & Edmunds 2003)
 - We measure M_{dust} ~ 3 to 8310⁻⁴ M_{sun}
 - Consistent with other SNR results (e.g., Cas A; Hines et al. 2004; Krause et al. 2004)
 - Given SN rate, SN account for 0.1% of dust in SMC (but see Sugerman et al. 2006)

Thanks!

Thanks to Edvige, Simone, Raffaella, and the rest of the organizers for a wonderful experience

A tutti grazie!

Caveats

- Linearity of the MIPS 160 um detectors
 - Checked against DIRBE
- Systematic
 differences in dust
 properties or DGR
 between
 "molecular" and
 "reference" regions
 - Large spatial scales
 - Works for the MW (Dame et al. 2001)
- Missing cold dust

