Evidence for a Significant Population of Feeble Star-Forming Sources at z>7

Richard Ellis (Caltech)

with

Dan Stark, Johan Richard (Caltech)
Eiichi Egami (Arizona)
Jean-Paul Kneib (Marseille),
Andy Bunker, Laurence Eyes (Exeter)
Avi Loeb (Harvard)
Mark Lacy (SSC)

Motivation

- Continue to seek sources responsible for cosmic reionization via direct imaging/spectroscopy in near-IR
- Their study, with present & future facilities, will complement HI surveys and define physics of reionization process and implications for future galaxy assembly

Evidence for early (z>7) star formation

- Surprisingly mature galaxies at z~5-6 with established (>100Myr) stellar populations (Spitzer/HST)
- Present of metals in intergalactic medium in spectra of highest z QSOs
- Insufficient abundance of high z luminous star forming galaxies to account for assembled stellar mass at later epochs
- Direct detection of many promising strongly-lensed candidates at z > 7

Established Stellar Populations at z~5-6

`Balmer break' in many (\sim 20) spectroscopically-confirmed z \sim 5-6 galaxies points to significant star formation in earlier progenitors

Old Stars at z~6

Eyles et al (2005)

How old?

- Depends on past star formation history not dust extinction
- $\Delta t \sim 100$ Myr even for burst model, older (<650 Myr) permitted
- Significant SF occurred during `unobserved' era 7 < z < 14

Stellar Mass Assembled by z ~ 5-6

Assembled stellar mass density at z~5-6 is surprisingly high Possibly a lower limit (although estimates v. uncertain)
Can this be reconciled with earlier observed star formation?

Declining UV luminosity density of dropouts

Rapid decline in UV luminosity density 3<z<7
Possible steepening of LF faint end slope with increasing z

Luminosity Dependent Evolution of Lya Emitters

- Decline also seen in the LF of Ly α emitters over smaller redshift interval 5.7<z<6.6
- Similar evidence for steepening of LF as we proceed to higher redshift

Kashikawa et al (2006)

Predicting the z~5-6 Stellar Mass Density

Observed high z SF underestimates assembled mass at z~5-6 Either high z SF is obscured or lower luminosity sources dominate

Low Luminosity z~10 Lyα Emitters: Critical Line Mapping With Keck

Critical line mapping of 9 clusters in J-band, corresponding to Ly α at 8.5 < z < 10.4

Clusters limited to those where the location of the critical line is precisely known from earlier work

Sensitive to sources magnified by at least $\times 20$ corresponding to intrinsic SFR $^{\sim}0.1~M_{\odot}~yr^{-1}$

NIRSPEC Slit Positions

Stark et al (Ap J in press, astro-ph/0701279)

Example: Abell 2390

Cluster critical line for $z_S > 7$

Wavelength sensitivity (1.5hr)

- 9 clusters with well-defined mass models & deep ACS imaging
- Obs. sensitivity $\sim 3-9.10^{-18}$ cgs; magn. $> \times 15-20$ throughout
- Sky area observed: 0.3 arcmin²; V(comoving) ~ 50 Mpc³
- 6 promising lensed emitter candidates (>5 σ)
- 8.6 < z < 10.2; L ~ 2 10. 10^{41} cgs; SFR ~ 0.2 -1 M_{\odot} yr⁻¹

How Reliable are Mass Models and Magnifications?

- Magnification \mathcal{M} depends strongly on position Ω , less so on z
- Error in magnification \mathcal{M} determined by Markov Chain MC sampling of multiple images of known spectroscopic redshift
- Bulk of survey has magnification $\mathcal{M} > \times 20$ and error in \mathcal{M} is ~20%

Candidate Ly α Emitters

8.6 < z < 10.2; L ~ 2 - 10. 10^{41} cgs; SFR ~ 0.2 - 1 M_{\odot} yr⁻¹

Recognize burden of proof that these are $z\sim10$ emitters is high Each detection is > 5σ , seen in independent exposures/visits

Interlopers? Critical Line Location Depends on z

Bonus of strong lensing:

By only searching the z>5 critical line, we minimize contamination from magnified interlopers at 1<z<3 which would lie elsewhere in the image plane.

So contamination is less likely than in non-lensed searches

Spectroscopic Elimination of Interlopers

Various explanations for a single emission line in the J-band

Line	Redshift	$\lambda_{\text{Ly}\alpha}$ (μm)	$\lambda_{\rm [OII]} (\mu { m m})$	$\lambda_{\mathrm{H}\beta}$ $(\mu\mathrm{m})$	$\lambda_{\mathrm{[OIII]}} (\mu\mathrm{m})$	$\lambda_{\mathrm{H}\alpha}$ $(\mu\mathrm{m})$
$[\mathbf{x}]$ $[\mathbf{x}]$ $[\mathbf{y}]$ $[\mathbf{y}]$	0.91 1.51^{b} 1.53^{c} 1.58 2.37 9.3	$\begin{array}{c} 0.2324 \\ 0.3047 \\ 0.3076 \\ 0.3138 \\ \hline 0.4093 \\ 1.2545 \end{array}$	0.7124 ^a 0.9338 0.9428 0.9618 1.2545 3.8388	0.9292 1.2179 1.2297 1.2545 1.6362 5.0149	0.9479/0.9571 $1.2425/1.2545$ $1.2545/1.2666$ $1.2797/1.2922$ $1.6692/1.6854$ $5.1160/5.1655$	1.2545 1.6444 1.6603 1.6937 2.2091 6.7708

- Deeper LRIS spectroscopy (Santos et al 2004) from 4000-9400Å eliminates Hα and [O II] as source of emission (4/6 candidates)
- H-band spectra eliminates [O III] as source (3/6 candidates)
- IRS spectroscopy (\sim 7µm) is in progress to verify H α at z \sim 10 (2/6 candidates)

Now believe >3/6 candidates likely to be 8<z<10 sources

Did faint SF galaxies at z~10 cause reionization?

$$n = \left(\frac{B}{10}\right) \left(\frac{n_{\rm H}}{10^{-7} \text{ cm}^{-3}}\right) \left(\frac{f_c}{0.1}\right)^{-1} \left(\frac{\text{SFR}}{1.0 \text{ M}_{\odot} \text{ yr}^{-1}}\right)^{-1} \left(\frac{n_c}{3 \times 10^{53}}\right)^{-1} \left(\frac{\Delta t}{575 \text{ Myr}}\right)^{-1}$$

Consider range:

 $f_c \sim 0.02\text{-}0.5$ $\Delta t \sim 250\text{-}575 \text{ Myr}$ $B \sim 5\text{-}10$

If >3 of our 6 candidates are at high z, low luminosity galaxies may play a dominant role in cosmic reionization

Further Confirmation of z>8 Candidate Ly α Emitters?

Stacking spectra to see if line profile is asymmetric?

- NIRSPEC R~2000 too coarse
- How to centroid faint line?

• Detecting H α at λ ~ 6 μ m in deep IRS data?

- IRS 24hr exposures of 2 candidates
- Will only see H α if Ly α /H α ~1, i.e. if Ly α is suppressed
- More ambitious follow-up with NIRES R~4000 echellette (requires 8-10hrs per target)...coming soon!

Is High Abundance of $z\sim9$ Ly α Emitters Plausible?

Predicted z~9 LF based on semi-analytic fit to lower z LFs

If 3 of the 6 z~9 candidates are at high z, the LF is only marginally consistent with semi-analytic extrapolation of that at z~6 but compatible with change to a top-heavy IMF or increase in SF efficiency at z~9

Stark, Loeb & Ellis (2007)

Searching for Lensed Dropouts with HST/Spitzer

- 8 well-constrained clusters with deep IRAC imaging (Egami & Rieke)
- 11 NICMOS pointings in 6 lensing clusters (4 orbits J/F110W, 5 orbits H/F160W)
- ACS/F850LP imaging of all 8 clusters
- K-band ground based imaging with Keck/NIRC + Subaru/MOIRCS

Richard et al (2007)

Combining ACS, NICMOS & Spitzer

Importance of foreground removal

MS1358: 5σ limit: $J_{AB}=26.7$, $H_{AB}=26.7$

Lensed z-band dropouts (z~7-8)

- 10 candidate z-drops in the 6 clusters surveyed to $H_{AB} \sim 26$ 26.8
- Implied SFR ~ 0.1 2 M_{\odot} yr⁻¹ (unlensed)
- Spectroscopic follow-up with NIRSPEC
- z~1-2 red galaxies expected to be main contaminants

Bulk of candidates unlikely to be z~2 interlopers

Stacked IRAC limit for 8 unconfused candidates gives upper limit at 3.6 microns rejecting passive z~2 population as primary population

Angular Distribution of Candidates

Angular distribution with respect to z~8 critical lines gives further indication of low foreground contamination

Deeper than UDF

Strong lensing permits us to probe z-band dropouts ~1-1.5 magnitudes deeper than the UDF in a field of ~2.5 arcmin²

Implications for Reionization from Lensed Dropouts

Spectroscopic confirmation underway (Richard et al)

4 hours with NIRSPEC recovers Lyα implied from UV continuum

- Even if a few are real, suggests significant contribution to reionization from low luminosity galaxies
- Consistent with picture revealed by lensed Lyα emitters (Stark et al 2007)

Summary

- Evidence from Balmer breaks and assembled stellar mass at z~5-6 suggests more star formation occurred beyond z~7 than is seen in current surveys: this occurred either in extincted objects or, more likely, in low luminosity systems
- Strong lensing surveys are finding an abundant population of candidate faint Ly α emitters and dropouts at z~7-10 with SFR <1 M_{\odot} yr⁻¹ and masses of 10^6 M_{\odot} < M < 10^8 M_{\odot}
- Spectroscopic and imaging follow-up supports hypothesis that at least some lensed sources are at z~10; given the small volumes probed it seems low luminosity sources contributed significantly to cosmic reionization
- Via these programs & upcoming dedicated instruments, we will get our first glimpse of star formation at z~10, and more effectively plan ambitious programs with JWST and TMT

JWST/TMT Complementarity

In the era of TMT+JWST we won't be interested in when reionization occurred but rather the physical process as tracked by the topology and structure of ionization bubbles

TMT gains in sensitivity, angular & spectral resolution but not field of view

Ly α emitters require adaptive optics:

- lensed examples are <30 mas across; TMT offers 9 mas (50pc @z~7)!
- typical line-widths <100-200 km/s

JWST finds luminous sources, TMT scans vicinity to determine topology of ionized shells via fainter emitters - in conjuction with HI surveys