High-redshift Quasars as Probes to the End of Reionization

Xiaohui Fan
University of Arizona

Collaborators: Becker, Carilli, Ferrara, Gallerani, Jiang, Richards, Roy Choudhury, Strauss, Walter, White, et al.

Background: 46,420 Quasars from the SDSS Data Release Three

The Highest Redshift Quasars Today

- z>4: >1000 known
- z>6: 19
- SDSS i-dropout Survey:
 - Completed in June 2006:
 - $7700 \ deg^{2}$, $z_{AB} < 20$
 - 27 luminous quasars at 5.71<z<6.42
- CFHT High-z Quasar Survey (CFHTQS, Willott et al. astro-ph/0706091)
 - Goal: 400 deg^2 , $z_{AB} < 22.5$
 - 4 quasars at z>6
 - New highest-z quasar at z=6.43
- SDSS Faint Quasar Survey (SFQS):
 - faint quasars in the deep SDSS stripe (Jiang, XF et al.),
 - $-300 \text{ deg}^2, z_{AB} < 22.5$
 - six z~6 quasar at $20 < z_{AB} < 21$
 - Goal: quasar LF

- Other on-going z~6 quasar surveys:
 - AGES (Cool et al.): Spitzer selected, one quasar at z=5.8
 - FIRST-Bootes (Becker et al.): radio selected, one quasar at z=6.1
 - QUEST: i-dropout surveys similar to SDSS
 - IR-based survey: UKIDSS,
 (z=5.83), VISTA, allows
 detection up to z~8-9.

Quasars as Probes to the End of Reionization

- What's the Status of IGM at z~6?
 - Measurements of Gunn-Peterson optical depth
 - Evolution of UV background
 - Constraints on IGM neutral fraction
- Was the Universe mostly neutral by $z\sim6-8$?
 - Distribution of dark gaps and transmission peaks
 - HII region size distribution
- What is the source of reionization?
 - AGN or galaxy

Evolution of Lyman Absorptions at z=5-6

$$\Delta z = 0.15$$

Accelerated Evolution at z>5.7

XF et al. 2006

Optical depth evolution accelerated

- z<5.7: $\tau \sim (1+z)^{4.5}$
- z>5.7: $\tau \sim (1+z)^{>11}$
- End of reionization?

Dispersion of optical depth also increased

- Some line of sight have dark troughs as early as z~5.7
- But detectable flux in ~50% case at z>6
- End of reionization is not uniform, but with large scatter

Evolution of Ionization State

- UV Ionizing background:
 - Assuming photoionization and model of IGM density distribution
 - UV background declines by close to an order of magnitude from z~5 to 6.2
 - Increased dispersion suggests a highly non-uniform UV background at z>5.8

• From GP optical depth measurement, volume averaged neutral fraction increase by >~ order of magnitude from z~5.5 to 6.2

Relation between optical depth and neutral fraction highly model-dependent

- Becker et al. (2006)
 - optical depth evolution could be consistent with a smooth evolution of ionizing background for a strongly-evolving log-normal density distribution of the IGM

Becker et al. 2006

- Relation between Γ and τ dependent on IGM clumpiness
 - Simulation results: clumpiness ~ 5 30,
 no strong evolution at z~6
 - Optical depth evolution driven by an decreasing background towards high-z

Evolution of Proximity Zone Size Around Quasars

Shapiro, Haiman, Mesinger, Wyithe, Loeb et al.

- Size of Proximity Zone region $R_{p} \sim (L_{Q} \ t_{Q} \ / \ f_{HI} \)^{1/3}$
- Size of quasar proximity zone decreases by a factor of ~2.4 between z=5.8 and 6.4 (Fan et al. 2006)
- Consistent with neutral fraction increased by a factor of ~15 over this narrow redshift range
- Can be applied to higher z and f_{HI} with lower S/N data
- Actual size of proximity zone dependent on details of radiative transfer and quasar model...

CFHTQS results (Willott et al. 2007)

- Strong evolution in τ_{GP} seen at z>5.5, but low S/N
- Scaled near-zone size 6-11
 Mpc at z>6
 - Consistent with a low f_{HI}
 - But uncertainties in z_{em}
 based on Lyα
 - Caution: using Lyα redshift could introduce large uncertainty in HII region size; but true systematic redshift difficult for faint quasars at z>6

Dark Gap Distributions

- Dark gap statistics (Songaila & Cowie 2002)
 - Gaps: regions where all pixels have τ >2.5
- Gaps among z~6 quasars
 - Average length shows the most dramatic increase at $z>5.8 \rightarrow IGM$ is dominated by long, dark gaps
 - Consistent with overlap at z~6-8?
 - Dispersions
 - Even at z>6, gap lengths are still finite
- Upper limit on neutral fraction
 - If IGM largely neutral, GP damping wing will wipe out all HII region transmissions
 - Existence of transmission at z>6 places an upper limit of average neutral fraction <30%
 - Independent upper limit on neutral fraction

XF et al. 2006

Dark Gap Statistics: Comparison with Simulations

- Gallerani et al. (2006, 2007)
- Distribution of width of transmission peaks
- Early reionization $(z_{overlap} \sim 15)$
- Late reionization $(z_{overlap} \sim 7)$
- Significant difference in gap distribution at z~6
- f_{HI}<0.3 at z~6
- But observed transmission peaks too wide compared to simulations

What Ionized the Universe? AGNs or Galaxies

• Quasar LF at z~6:

- SDSS Wide: 7700 deg^2 , 17 quasars, $z_{AB} < 20$
- SDSS Deep: ~150 deg², 6
 quasars, 20<z_{AB}<21
- AGES: 1 quasar in 5 deg² at z_{AB} <21.5

• Steeppening of LF:

- $\Phi \propto L^{-3.1}$
- Comparing to $\Phi \propto L^{-2.4}$ at $z \sim 4$

Reionization by AGNs?

- Can quasars do it?
 - Too few quasars unless QLF remains to be steep to AGN luminosity
- Can low-luminosity AGNs ionize the IGM by z~6?
 - Stacking X-ray image of LBGs in UDF... too few faint AGNs
- Can accretion to seed BHs ionize the IGM by z~15?
 - Dijkstra, Haiman & Loeb (2004)
 - Soft X-ray background overproduced if quasars produce ~10 photons/H atom
 - 'Preionization' to f(HI)~50%
 by X-rays is still allowed (e.g. Ricotti et al.)

Jiang, XF et al. 2007

Probing Reionization History

Surveys of quasars at z~7

LBT: LBC-Red i-z-Y selection (1 deg²/night)

N (2 69 000 4 7) N (2 69 000 4 7) N (2 69 000 4 7) N (3 69 000 4 7) N (4 69 000 4 7) N (5 6

UKIDSS: YJHK photometry