

Deidre Hunter (Lowell Observatory) Collaborator: Bruce Elmegreen (IBM)

Motivation

- Star formation processes in outer stellar disks of dwarfs
- The role of the HI in determining the nature of stellar disks
 - In most dIm, the gas density even in the central regions is below the threshold for spontaneous cloud formation through large-scale gravitational processes (Toomre 1964).
 - Outer stellar disks of dIm present a particularly difficult test of our understanding of the cloud/star formation process.

A model of star formation applicable to the outer parts of dIm and spiral disks (Elmegreen & Hunter 2006)

Large-scale gravitational instabilities plus local compression mechanisms (turbulence, etc)

- In outer disks: turbulence forms clouds that locally exceed the Toomre critical gas density.
 - Patchy star formation
 - Steeper stellar exponential profile
 - 24% of 94 dIm show this (Hunter & Elmegreen 2006)

But, the star formation profile depends on the details of how the gas drops off.

Example: If the gas
profile becomes
shallower in the outer
parts, the star
formation profile can
be either a single
exponential or become
shallower, depending on
the details of the gas
distribution

Gas density profiles $\Sigma_{gas}(R)$

- 15 dIm, 2 BCDs, 2 Sms (subset of survey of 136 dwarfs)
 - 3 dIm, 2 BCDs have peculiar HI kinematics (plotted as red points).
- HI data from
 - DDO 43: Simpson, Hunter, & Nordgren 2005
 - DDO 50: Puche et al. 1992
 - DDO 53, DDO 86, DDO 87, DDO 133, NGC 4163, Haro 14, UGC 11820: Hunter et al., in preparation
 - DDO 105, DDO 168: Broeils 1992
 - DDO 154: Carignan & Beaulieu 1989
 - DDO 155: Carignan et al. 1990
 - IC 1613: Wilcots 2001
 - NGC 2366: Hunter, Elmegreen, & van Woerden 2001
 - WLM: Kepley, Wilcots, Hunter, & Nordgren 2007
 - DDO 210: Iyer, Simpson, & Hunter 2006, submitted
 - VII Zw 403: Simpson et al, in preparation
 - DDO 88: Simpson, Hunter, & Knezek 2005

Example: DDO 86

Integrated HI contours on V image

Break in V exponential profile.

M_{stars}/M_{gas} (R)

- M_{qas} is HI plus He
- M_{stars} from azimuthally-averaged L_{V} and constant stellar mass/light ratio of 0.57
 - Average of Bell & de Jong (2001) models with "scaled Salpeter" stellar initial mass function for average B-V=0.35 of dIm

M_{stars}/M_{gas}

- →In most, the galaxy is gas-dominated and becomes increasingly gasrich with radius, implying a decreasing large-scale star formation efficiency.
- →Lack of sharp transitions in the star/gas ratio, including at breaks in the optical exponential profiles, suggests that the factors dominating the change in star formation with radius are changing steadily.

M_{stars}/M_{gas} --- the central ratio

→ Galaxies with a higher central ratio of gas/stars have a higher integrated ratio of gas/stars.

We fit the fall-off of the gas surface density with a Sersic function:

$$I(R) = I_0 e^{-(R/R_0)^{1/n}}$$

Written here as:

$$\log \Sigma_{gas}(R) = (\log \Sigma_{gas})_0 - 0.434 (R/R_0)^{1/n}$$

Optical profiles of elliptical galaxies are fit with n=4 and exponential disks with n=1.

→ Here, the HI profiles of dwarfs are fit well with n≤1.

Sersic profiles as a function of R normalized to the half light radius.

There's a wide variety of gas fall-offs with radius.

Example: NGC 2366

HI R_{50}/R_{90} and Sersic parameters

Sersic n and central concentration of star formation

0.2

Sersic Profiles

0.1

0.2 0.4 radius/half light radius

Degree of central concentration of current star formation.

→Star formation in galaxies with larger Sersic n parameters tends to be more concentrated to the galaxy center.

Sersic (log $\Sigma_{\rm gas}$)₀ and integrated star formation

SFR/ π R_D² measured from H α

→ The higher the central gas density, the higher the integrated star formation rate.

Optical double exponential disks --HI profiles

Galaxies with comparable M_V:

Optical double exponential disks --Trends

Big blue points: galaxies with double exponential V profiles

Degree of central concentration of current star formation.

Normalized star formation rate

- Sersic n tends to be lower.
- Central gas density tends to be lower.

Conclusions

- The factor dominating the star formation activity with radius changes steadily, even in galaxies with optical exponential breaks.
- The gas density profiles of dwarf galaxies are well fit by Sersic profiles with n≤1.
- The central gas density seems to be more important in determining integrated star formation rates than the details of how the gas falls off with radius.
- Star formation activity tends to be more centrally concentrated in galaxies with a shorter relatively flat part of the gas profile.
- The gas density profile in dwarfs with optical double exponential profiles tends to be relatively flat interior to the break and falls beyond that.