Neutral Hydrogen Gas in Star Forming Galaxies at z=0.24

Philip Lah

HI Survival Through
Cosmic Times
Conference

Collaborators:

Frank Briggs (ANU)
Jayaram Chengalur (NCRA)
Matthew Colless (AAO)
Roberto De Propris (CTIO)
Michael Pracy (ANU)
Erwin de Blok (ANU)

Talk Outline

Star Forming Galaxies at z = 0.24

- 'Fujita sample' of star-forming galaxies
- HI mass content by 'coadding'
- HI mass vs. star formation rate
- radio continuum at z = 0.24

HI in Abell 370, a galaxy cluster at z=0.37

The Fujita galaxies - Ha emission galaxies

The Subaru Telescope

The Surprime-cam filters

The Suprime-Cam Field

24' × 30'

Fujita et al. 2003 narrow band imaging - $H\alpha$ emission at z=0.24

348 galaxies

HI in the Fujita Galaxies

Giant Metrewave Radio Telescope

Giant Metrewave Radio Telescope

GMRT data for the field

Observing Frequency	HI Redshift
1150 MHz	0.24

Time	
on Field	
~44 hours	

Primary	Synthesis
Beam Size	Beam Size
~29'	~2.9"

Why HI detection is hard

Coadding of HI Signals

Radio Data Cube

• pick out the HI signal using optical redshifts

DEC

• coadd faint signals to make the measurement

Anglo-Australian Telescope

2dF instrument

multi-object, fibre fed spectrograph

Fujita galaxies - B filter

thumbnails 10 arcsec × 10 arcsec

ordered by increasing H α luminosity

Fujita galaxies – 2dF redshifts

Galaxy Sizes

To coadd the signal I need the galaxies to be unresolved. This allows me take the value in the radio data cube at the position and redshift of galaxy as the total HI flux.

Galaxy Sizes

To coadd the signal I need the galaxies to be unresolved. This allows me take the value in the radio data cube at the position and redshift of galaxy as the total HI flux.

Complication!!

Many of the galaxies are larger than GMRT 2.9" synthesis beam.

Estimate of Galaxy HI Diameter

Used relationship between optical size and HI size from Broeils & Rhee 1997

Coadded HI Spectrum

neutral hydrogen gas measurement

using 121 redshifts - weighted average

 $M_{HI} =$ (2.26 ± 0.90) $\times 10^9 M_{\odot}$

The Cosmic Neutral Gas Density

Cosmic Neutral Gas Density vs. Redshift

Cosmic Neutral Gas Density vs. Redshift

Cosmic Neutral Gas Density vs. Time

Star Formation Rate & HI mass

Galaxy HI Mass vs Star Formation Rate

HI Mass vs Star Formation Rate at z = 0.24

Problem at High Redshift

- at z > 1 factor ~10 increase in cosmic star formation rate density
- if the SFR-HI mass relation holds true would lead to factor of ~4 increase in cosmic neutral gas density
- from damped Lyα systems see only a factor ~2 increase at high redshift (Prochaska et al. 2005)
- change in star formation mechanism efficiency increased by a factor ~2

Radio Continuum from Star Forming Galaxies

Comparison of Star Formation Indicators at z ≈ 0

Comparison at z = 0.24

HI in Abell 370, a galaxy cluster at z = 0.37

Galaxy Clusters

Butcher-Oemler effect (1978)

• with increasing redshift galaxy clusters show a higher fraction of optically blue galaxies (mostly

bright spirals & irregulars)

- effect noticeable from z≈0.1
- strong effect by z=0.4

Abell 370 Observations

• radio observations with the GMRT of the galaxy cluster totalling \sim 34 hours at 1040 MHz (HI 21 cm at z = 0.37)

• V, R & I band optical imaging using the

SSO 40 inch telescope

• spectroscopic follow-up using AAOmega on the Anglo-Australian Telescope for 4 nights for optical redshifts

Blue V-I colour ≤ 0.9

Red V-I colour > 0.9

the galaxies are
large luminosities
L* or greater

HI gas
measurement
278 redshifts

$$M_{\rm HI} =$$
 (7.4 ± 2.6)
 $\times 10^9 \, \rm M_{\odot}$

Signal to Noise = 2.8

Blue Galaxies 128 redshifts $M_{HI} = (10.1 \pm 4.1) \times 10^9 M_{\odot}$ Signal to Noise = 2.5 Red Galaxies 150 redshifts $M_{HI} = (5.5 \pm 3.4) \times 10^9 M_{\odot}$ Signal to Noise = 1.6

Conclusions

Conclusions

- HI 21cm emission is observable at moderate redshifts using the coadding technique
- the measured cosmic neutral gas density at z=0.24 is consistent with that from damped Ly α
- the radio continuum-H α & SFR-HI mass correlations both hold at z=0.24 \Rightarrow suggests that the process of star formation in field galaxies is not significantly different ~3 Gyr ago
- there is large amounts of HI gas at z=0.37 in galaxies within clusters and the gas is concentrated in the blue galaxies

Additional Slides

HI mass function

Histogram of Redshifts

Why use GMRT?

• GMRT collecting area

 \Rightarrow 21 × ATCA

 \Rightarrow 6.9 × WSRT

 \Rightarrow 3.6 × VLA

- frequency coverage & bandwidth
- angular resolution
- position at low latitude

GMRT data for the field

GMRT Observation Time	Time on Field
80.5 hours	~44 hours

Observing	HI
Frequency	Redshift
1150 MHz	0.24

Instantaneous	Number of	Channel	Channel
Bandwidth	Channels	Bandwidth	Width
32 MHz	2 × 128	125 kHz	32.6 kms ⁻¹

Primary	Synthesis
Beam Size	Beam Size
~29'	~2.9"

RMS per channel	Continuum RMS
~130 µJy	15 μЈу

The Galaxy Positions

The Galaxy Positions

Narrowband Filter: Ha detection

Ha Luminosity Function

Merging/Interacting System

Contours - radio continuum Greyscale - Hα emission

• 5 times brighter in $H\alpha$

Contours- radio continuum Greyscale - optical continuum

• 0.6 times as bright in z' filter

The End

