The smallest H I galaxies

Tom Oosterloo Astron & Kapteyn Institute

- Survey for small H I galaxies
- H I in Leo T

Why look for small H I galaxies?

- Formation of small galaxies still a puzzle
 - Slope mass- & luminosity functions shallower than halo mass function
 - Missing satellite problem
 - Small galaxies are not efficient in cooling their gas and form stars
 - Re-ionisation suppresses star formation in small galaxies
 - Gas expelled by SN & stellar winds
 - How many dwarfs should exist? Dark Galaxies exist?
 - Buildingblocks of larger systems; Fuel for accretion (talks Sancisi, Fraternali)
 - Relation with Compact High-Velocity Clouds

Narrow gap between small galaxies and HVCs

CVn Survey

- Survey aiming to detect $10^6~M_\odot$ at a distance of a few Mpc
- Large region in CVn observed with WSRT

$$12^h\ 18^m < \alpha < 12^h\ 29^m\ ;\ 31^\circ < \delta < 46^\circ; -450 < {\it cz} < 1300\ km\ s^{-1}\ 86\ deg^2$$

- Chosen for cold Hubble flow along filament
 - 60 x 12 hrs; 24 pointings in each 12 hrs; 1372 pointings used
 - 30 arcsec and 33 km s⁻¹ resolution
 - Effective integration time per position: 80 minutes
 - Noise in full-resolution data 0.8 mJy beam⁻¹ \leftrightarrow 1.6 ·10¹⁹ cm⁻²
 - Detection limit 4.7 \times 10⁴ D^2 M_{\odot}
 - High-resolution follow up: 15 arcsec & 3 km s⁻¹; factor 2 deeper
 - Imaging in B & R at INT

69 detections - 19 new from $3 \cdot 10^6$ to $10^{10} \, M_{\odot}$ all with visible galaxy

What the data look like

Galaxies detected using cubes with different resolutions (spatial and velocity)

However: no additional objects found in lower-resolution cubes

⇒ No low-surface density objects

Example

Example

Kinematics unresolved

→ higher-resolution follow up

15 arcsec & 3 km s⁻¹
6 hrs per galaxy
1.0 mJy beam⁻¹ noise (over 3 km s⁻¹)

Follow up

Comparison with HIPASS

Distances

Many galaxies in the region have independent distance estimates

Hubble flow

Model of density field & peculiar motions (Zaroubi et al)

Parametric model of local velocity field (Tonry et al.)

Simple Hubble flow has lowest dispersion for nearby galaxies

Note: error in D increases with $D \rightarrow$ error in mass "independent" of D

H I mass function

Mass function smooth

$$\alpha = -1.2 \quad \log M_{HI^*} = 9.6$$

 $\Phi^* = 0.125$

Small galaxies missing????

Lower limit to H I mass?

At 1% level: galaxies missing below few · 106 M $_{\odot}$. With Apertif, XNED, MIRANDA, ASKAP,... factor ~ 10 deeper

Tully-Fisher relations

Tight relation between rotation velocity and luminosity, in particular when using V_{flat} Strong coupling between total mass, baryonic mass and star formation

TFs of Noordermeer 2006 & Verheijen 2001

Overall: CVn galaxies seem to follow same TF relation as large galaxies

No indication for systematic deviation

TF of Sakai et al. 2000

Verheijen 2001

Small galaxies: no TF anymore

Strong coupling between *observed* baryons and *observed* DM halo disappears

Baryonic TF

in general :TF relation improves when taking all baryons in to account AND use flat part of rotation curve

When using V_{flat} : small galaxies below relation with stellar mass

McGaugh 2005

Baryonic TF

For small galaxies: TF disappears but still some kind of BTF, but with large scatter

Small galaxies above BTF of large galaxies

Main reason: do not reach flat part of rotation curve?

Leo T

- Star formation history of LG dwarfs very complex, no 2 are alike
- Some have H I, often in offset clouds
- Recently discovered dwarf companion of the Galaxy (Irwin et al. Jan 2007)
- D = 420 kpc
- Metal poor: [Fe/H] = -1.6 -2.3
- Young subpopulation (200 Myr)
- $M_V = -7$
- Transition object dSphr/dlrr, like Phoenix or LGS3 (M_V ~ -10), but much smaller
- Smallest system with young population

Leo T is gas rich

HIPASS suggests Leo T has H I

- $M_{\text{HI}} = 3 \cdot 10^5 \, M_{\odot}$ $M_{\text{HI}}/L_{\text{V}} = 5$ (Phoenix 0.1; LGS3 0.3)
- $M_{HI}/M_{bar} = 0.8$

HIPASS image

WSRT observations

- Nice, regular HI distribution. Some rotation???????
- H I velocity matches optical velocity: 39 vs 38 km s⁻¹
- Velocity dispersion H I: 7 km s⁻¹, stars 8 km s⁻¹
- $M_{\rm dyn}/L_V \sim 125$

CNM vs WNM

- Structure in dispersion
- Bright H I → smaller widths
- More complicated:
- If columndensity above 3 · 10²⁰ cm⁻²: two components.

Also seen in SagDIG but not in LGS3

If columndensity above critical value of 3 -5 M_☉ kpc⁻²: CNM present and stars can form consistent with e.g. Taylor & Webster 2005

Summary

- WSRT survey for small galaxies in CVn
 - 69 galaxies, down to $3 \cdot 10^6 M_{\odot}$;
 - No dark galaxies, faint-end slope mass function -1.2
 - Hint for lack of smaller H I galaxies
 - Tully-Fisher relation has very large scatter, effectively disappears
 - BTF has smaller scatter, but scatter is large:
 fail to reach flat part of rotation curve, do not sample DM halo well enough
- Leo T
 - Smallest galaxy with young stellar population
 - Regular H I distribution. Rotation?
 - Two-phase ISM: CNM and WNM present, consistent with models