THE N_{HI} DISTRIBUTION FUNCTION AT HIGH Z

JASON X. PROCHASKA UCO/LICK OBSERVATORY

SCOTT BURLES (MIT)
STEPHANE HERBERT-FORT (ÅRIZONA)
JOHN O'MEARA (PSU SCRANTON)
GABRIEL PROCHTER (UC SANTA CRUZ)
ARTHUR M. WOLFE (UC SAN DIEGO)

f(NHI) DEFINED

- N_{HI} FREQUENCY DISTRIBUTION
 - **↑** AKIN TO A LUMINOSITY OR MASS FUNCTION
- DEFINITION $f(N_{HI},X)$
 - ◆ NUMBER OF LINES WITHIN (N, N+dN) and (X, X+dX)
 - **★ X IS DEFINED TO GIVE A**CONSTANT LINE DENSITY
 WITH REDSHIFT
 - ▶ IF II AND O ARE CONSTANT
 - **COSMOLOGY DEPENDENT**
- MOMENTS
 - **→ ZEROTH: LINE DENSITY** $\ell(X)$
 - ullet FIRST: MASS DENSITY Ω

$$f(N,X) = \frac{m_{DLA}(N, N + \Delta N)}{\Delta X}$$

THE EXPERIMENT

- OBSERVE A QUASAR
 - **→ TYPICALLY BRIGHT (V<19)**
 - **→ GENERALLY Z>2**
- STUDY THE GAS BETWEEN
 US AND THE QSO
 - **→ PROPERTIES OF THE QSO ARE**LARGELY UNIMPORTANT
 - **♦ ABSORPTION-LINE**SPECTROSCOPY
 - AKIN TO GALACTIC ISM STUDIES USING O AND B STARS

- LYα FOREST
 - $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
 - $+ \delta \rho / \rho < 10$
 - + Lots o' science
- LYMAN LIMIT SYS
 - $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
 - + $\delta \rho / \rho \sim 100$
 - **♦ UNEXPLORED**
- DAMPED LYQ SYS
 - $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
 - $+\delta\rho/\rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

LYα FOREST

- $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
- $+\delta\rho/\rho$ < 10
- + Lots o' science

• LYMAN LIMIT SYS

- $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
- + $\delta \rho / \rho \sim 100$
- **UNEXPLORED**

• DAMPED LYQ SYS

- $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
- + $\delta \rho / \rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

- LYα FOREST
 - $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
 - $+ \delta \rho / \rho < 10$
 - + Lots o' science
- LYMAN LIMIT SYS
 - $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
 - + $\delta \rho / \rho \sim 100$
 - **♦ UNEXPLORED**
- DAMPED LYQ SYS
 - $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
 - $+\delta\rho/\rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

- LYα FOREST
 - $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
 - $+\delta\rho/\rho$ < 10
 - + Lots o' science
- LYMAN LIMIT SYS
 - $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
 - + $\delta \rho / \rho \sim 100$
 - **UNEXPLORED**
- DAMPED LYQ SYS
 - $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
 - $+\delta\rho/\rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

- LYα FOREST
 - $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
 - $+ \delta \rho / \rho < 10$
 - + Lots o' science
- LYMAN LIMIT SYS
 - $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
 - + $\delta \rho / \rho \sim 100$
 - **♦ UNEXPLORED**
- DAMPED LYQ SYS
 - $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
 - $+\delta\rho/\rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

- LYα FOREST
 - $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
 - $+ \delta \rho / \rho < 10$
 - + Lots o' science
- LYMAN LIMIT SYS
 - $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
 - + $\delta \rho / \rho \sim 100$
 - **UNEXPLORED**
- DAMPED LYQ SYS
 - $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
 - $+\delta\rho/\rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

- LYα FOREST
 - $+ N_{HI} < 10^{17} \text{ cm}^{-2}$
 - $+ \delta \rho / \rho < 10$
 - + Lots o' science
- LYMAN LIMIT SYS
 - $+ N_{HI} > 10^{17} \text{ cm}^{-2}$
 - + $\delta \rho / \rho \sim 100$
 - **♦ UNEXPLORED**
- DAMPED LYQ SYS
 - $+ N_{HI} > 2 10^{20} \text{ cm}^{-2}$
 - $+\delta\rho/\rho >> 100$
 - **GALAXIES**
 - NEUTRAL ISM

QAL TECHNIQUE AND HI STUDIES

- ADVANTAGES
 - **◆ SENSITIVITY TO VERY LOW**COLUMN DENSITIES
 - $N_{\rm HI} < 10^{12} \, \rm CM^{-2}$
 - **→ PROBES HI DIRECTLY AT**HIGH REDSHIFT
 - **◆ EXCELLENT STATISTICS**
- DISADVANTAGES
 - **♦ RESTRICTED TO Z > 1.6**WHEN USING THE OPTICAL
 - **◆ DIFFICULT TO CONNECT GAS**WITH GALAXIES, FILAMENTS
 - **QSO GLARE**
 - **♦ SUBJECT TO BIASES**RELATED TO QSO SAMPLES

DAMPED LYQ SYSTEM DEFINED

- N_{HI} > 2 X 10²⁰ CM⁻²
 - **♦ DOMINANT RESERVOIR OF**NEUTRAL GAS
 - + LARGE N_{HI} => $\delta \rho / \rho$ >> 100
 - **◆ ISM OF THE PROGENITORS**OF MODERN GALAXIES

SDSS DLA SAMPLE

- HOMOGENOUS DATASET
 - **+ COLOR SELECTED QSOS**
 - **→** COMPLETE TO I = 19.5
 - **+ UNIFORM SPECTRA**
 - R~2000
 - $\lambda = 3800 \text{ TO } 9200\text{A}$
- CURRENT DATA RELEASE
 - + >1000 DLAs
 - + z > 2.2
- AUTO DLA SEARCH
 - **♦ SIMPLE ALGORITHM**
 - VISUAL VERIFICATION
 - ♦ BY-HAND LYX ANALYSIS

fhi: Nhi Frequency Distribution

THE BREAK: SIGNIFICANCE

- SINGLE-POWER LAW
 - $+ \alpha \sim -2$ From Low N_{HI}
 - + RULED OUT AT >99% C.L.
 - ♦ OVERPREDICTS THE INCIDENCE OF DLAS WITH N_{HI} > 21.7 SUBSTANTIALLY
- SLOPE AT LARGE N_{HI}
 - **→ STEEPER THAN -2**
 - ◆ BEST FIT IS -6

THE BREAK: DUST?

- EXTINCTION
 - ◆ MAGNITUDE LIMITED QSO

SAMPLE

- **♦ LARGE NHI**
 - LARGE DUST COLUMN
- TESTS FOR DUST
 - **→ RADIO SURVEYS**
 - CORALS, UCSD
 - REPRODUCE α=-2 AT LOW N_{HI}
 - SMALL SAMPLE IMPLIES
 WIGGLE ROOM FOR THE
 BREAK
 - **MINIMAL REDDENING**
 - MURPHY ET AL.
 - VLADILO ET AL.

THE BREAK: H2

MOLECULAR PHASE

- **↑** AT LARGE SURFACE DENSITY, HI -> H₂
 - EXTINCTION FACILITATES H₂
 CLOUD FORMATION
 - E.G. SCHAYE (2001)
- LOCAL f(N)
 - **→ HI: BREAK AT N_{HI} ~ 21.5**
 - ► TRANSITION TO H₂?
 - + CO MAPS
 - BIMA SURVEY OF LOCAL
 GALAXIES
 - **WEIGHT BY LUMINOSITY**
 - ★ f(N_{H2}) EXTENDS OFF THE
 HI DISTRIBUTION
 - PLAUSIBLE EXPLANATION
 - INCIDENCE OF LARGE N(H₂)
 CLOUDS IS VERY SMALL

• GRB AFTERGLOW

- **◆ GENERALLY EXHIBIT A**LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
- **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - $+ A_V = 0.05 \text{ TO } 0.2 \text{ MAG}$
 - INCLUDE MOST GRB
 SIGHTLINES
- H₂?
 - **♦ VERY LOW MOLECULAR**FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

• GRB AFTERGLOW

- **◆ GENERALLY EXHIBIT A**LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
- **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - $+ A_V = 0.05 \text{ TO } 0.2 \text{ MAG}$
 - QSO SURVEYS WOULD INCLUDE MOST GRB SIGHTLINES
- H₂?
 - **♦ VERY LOW MOLECULAR**FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

PROCHASKA ET AL (2007)

• GRB AFTERGLOW

- ◆ GENERALLY EXHIBIT A LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
- **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - $+ A_V = 0.05 \text{ TO } 0.2 \text{ MAG}$
 - INCLUDE MOST GRB
 SIGHTLINES
- H₂?
 - **♦ VERY LOW MOLECULAR**FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

• GRB AFTERGLOW

- **◆ GENERALLY EXHIBIT A**LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
- **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - $+ A_V = 0.05 \text{ TO } 0.2 \text{ MAG}$
 - QSO SURVEYS WOULD INCLUDE MOST GRB SIGHTLINES
- H₂?
 - **♦ VERY LOW MOLECULAR**FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

PROCHASKA ET AL (2007)

- GRB AFTERGLOW
 - **◆ GENERALLY EXHIBIT A**LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
 - **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - $+ A_V = 0.05 \text{ TO } 0.2 \text{ MAG}$
 - ► QSO SURVEYS WOULD INCLUDE MOST GRB SIGHTLINES
- H₂?
 - **♦ VERY LOW MOLECULAR**FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

• GRB AFTERGLOW

- **◆ GENERALLY EXHIBIT A**LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
- **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - $+ A_V = 0.05 \text{ TO } 0.2 \text{ MAG}$
 - QSO SURVEYS WOULD INCLUDE MOST GRB SIGHTLINES
- H₂?
 - **♦ VERY LOW MOLECULAR**FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

TUMLINSON ET AL. (2007

- GRB AFTERGLOW
 - ◆ GENERALLY EXHIBIT A LARGE DLA AT Z=Z_{GRB}
 - INCLUDES NHI > 22 !!
 - **→ MEASURE METALLICITY,**DEPLETION, H₂ CONTENT
- EXTINCTION?
 - + A_V = 0.05 TO 0.2 MAG
 - INCLUDE MOST GRB
 SIGHTLINES
- H₂?
 - VERY LOW MOLECULAR
 FRACTION IN GRB DLAS
 - $+ f(H_2) < 10^{-5}$
 - DESTROYED BY LOCAL SF?

VERY SIMILAR RESULTS FROM VERY DIFFERENT TECHNIQUES

- COINCIDENCE?
 - + Z~3 GALAXIES
 - LOWER AVERAGE DM MASS
 - LOWER METALLICITY
 - HIGHER HI FRACTION?
 - DISKS? CLUMPS??
- STATEMENT ABOUT GALAXY FORMATION?
 - **♦ SF REGULATE THE HI**SURFACE DENSITY PROFILE
 - **CONSUMPTION OF GAS**
 - H₂ FORMATION
 - **FEEDBACK**
 - **♦ SIMILAR AVERAGE 'DISK' MASS?**
 - $M_{HI} \sim 2\pi N_{HI} R_{d}^{2} \sim 4 \times 10^{9} M_{SUN}$

- Z=1 'DLA' SURVEY
 - **→ MGII SURVEY (SDSS)**
 - **+ HST BOOTSTRAP**
 - RAO ET AL. (2006)
 - AVERAGE NHI OF MGII ABSORBERS
- f(N_{HI}) RESULTS
 - ★ f(N_{HI}) contradicts

 MEASUREMENTS AT Z=0 AND 2
 - ▶ ONLY THE NHI ~ 21.7 BIN
 - \star z=1 f(N_{HI}) is non-physical
 - MORE CROSS-SECTION IN HI DISKS
 AT NHI = 21.7 THAN 21.35
 - FIND ONE GALAXY (REAL WORLD OR SIMULATION) WHERE THIS HOLDS
 - **EXPLANATIONS**
 - **SMALL NUMBER STATS?**
 - LENSING?

- Z=1 'DLA' SURVEY
 - **→ MGII SURVEY (SDSS)**
 - **+ HST BOOTSTRAP**
 - RAO ET AL. (2006)
 - ► AVERAGE N_{HI} OF MGII ABSORBERS
- f(N_{HI}) RESULTS
 - → f(N_{HI}) contradicts

 MEASUREMENTS AT Z=0 AND 2
 - ▶ ONLY THE NHI ~ 21.7 BIN
 - \star z=1 f(N_{HI}) is non-physical
 - MORE CROSS-SECTION IN HI DISKS AT NHI = 21.7 THAN 21.35
 - FIND ONE GALAXY (REAL WORLD OR SIMULATION) WHERE THIS HOLDS
 - **EXPLANATIONS**
 - **SMALL NUMBER STATS?**
 - LENSING?

HI MASS DENSITY FROM DLA

- $\bullet \Omega_{\rm g}$
 - ★ MASS DENSITY OF THE UNIVERSE IN ATOMIC GAS
 - + Units of ρc
- REDSHIFT EVOLUTION
 - + z>2 (SDSS)
 - ▶ DECLINE BY ~2 FROM Z=4 TO 2
 - COINCIDENCE OF Z=O AND Z=2
 - HI MASS DENSITY IS FAR LARGER THAN DWARF GALAXIES AT Z=0
 - + Z=O (21CM)
 - REASONABLE AGREEMENT WITH Z=2
 - + z=1 (MgII)
 - **TOTAL DISCONNECT**
 - **▶ REASONABLE WITH 0.666 SCALING**

HI MASS DENSITY FROM DLA

- $\bullet \Omega_{\rm g}$
 - Mass density of the Universe in atomic gas
 - + Units of ρc
- REDSHIFT EVOLUTION
 - + z>2 (SDSS)
 - DECLINE BY ~2 FROM Z=4 TO 2
 - COINCIDENCE OF Z=O AND Z=2
 - HI MASS DENSITY IS FAR LARGER THAN DWARF GALAXIES AT Z=0
 - + Z=O (21CM)
 - REASONABLE AGREEMENT WITH Z=2
 - + z=1 (MGII)
 - TOTAL DISCONNECT
 - **▶ REASONABLE WITH 0.666 SCALING**

f(NHI) of the Lya Forest

- LYA FOREST
 - **◆ EVEN A SINGLE SIGHTLINE**CAN SUFFICE
 - + E.G.
 - ► KIRKMAN & TYTLER (1997)
 - ▶ KIM ET AL. (2002)
- RESULT
 - $f(N_{HI}) \sim N_{HI}^{-1.5}$
 - N_{HI} ~ $10^{12.5}$ to $10^{14.5}$
 - **► INCOMPLETE AT <10**^{12.5}?
 - **→ PERHAPS, THIS IS A VERY**LIMITED DESCRIPTION
 - **▶** OR EVEN, INCORRECT
- BIG 'GAP'
 - + LLS
 - ▶ 4+ ORDERS OF MAGNITUDE IN NHI
 - OBSERVATIONAL CHALLENGE

f(NHI) OF THE LYA FOREST

- LYA FOREST
 - → EVEN A SINGLE SIGHTLINE CAN SUFFICE
 - + E.G.
 - KIRKMAN & TYTLER (1997)
 - ▶ KIM ET AL. (2002)
- RESULT
 - $f(N_{HI}) \sim N_{HI}^{-1.5}$
 - $N_{\rm HI} \sim 10^{12.5}$ to $10^{14.5}$
 - INCOMPLETE AT < 1012.5?
 - **→ PERHAPS, THIS IS A VERY**LIMITED DESCRIPTION
 - **▶** OR EVEN, INCORRECT
- BIG 'GAP'
 - + LLS
 - ▶ 4+ ORDERS OF MAGNITUDE IN NHI
 - OBSERVATIONAL CHALLENGE

f(NHI) of the Lya Forest

- LYA FOREST
 - **◆ EVEN A SINGLE SIGHTLINE**CAN SUFFICE
 - + E.G.
 - KIRKMAN & TYTLER (1997)
 - ▶ KIM ET AL. (2002)
- RESULT
 - $f(N_{HI}) \sim N_{HI}^{-1.5}$
 - N_{HI} ~ $10^{12.5}$ to $10^{14.5}$
 - **► INCOMPLETE AT <10**^{12.5}?
 - **→ PERHAPS, THIS IS A VERY**LIMITED DESCRIPTION
 - **▶** OR EVEN, INCORRECT
- BIG 'GAP'
 - + LLS
 - ▶ 4+ ORDERS OF MAGNITUDE IN N_{HI}
 - OBSERVATIONAL CHALLENGE

f(NHI) of the Lya Forest

- LYA FOREST
 - **◆ EVEN A SINGLE SIGHTLINE**CAN SUFFICE
 - + E.G.
 - KIRKMAN & TYTLER (1997)
 - ▶ KIM ET AL. (2002)
- RESULT
 - $f(N_{HI}) \sim N_{HI}^{-1.5}$
 - N_{HI} ~ $10^{12.5}$ to $10^{14.5}$
 - **► INCOMPLETE AT <10**^{12.5}?
 - + PERHAPS, THIS IS A VERY LIMITED DESCRIPTION
 - **▶** OR EVEN, INCORRECT
- BIG 'GAP'
 - + LLS
 - ▶ 4+ ORDERS OF MAGNITUDE IN NHI
 - OBSERVATIONAL CHALLENGE

SUPER LLS

O'MEARA ET AL. (2007

- + A.K.A. "SUB-DLA"
- + BUT MORE LLS THAN DLA
 - IONIZED GAS
- **+ DAMPING WINGS OF LYA**
 - **▶ REQUIRE HIGH-RES SPECTRA**
- FIRST SURVEY
 - + UVES
 - **DESSAUGES-ZAVADSKY ET AL.**
 - PEROUX ET AL.
- KECK/MAGELLAN SURVEY
 - + MIKE, ESI
 - + 50 SLLS AT Z>2

SUPER LLS

- SLLS f(N_{HI})
 - $f(N_{HI}) \sim N_{HI}^{-1.4}$
 - **◆ SHALLOWER POWER-LAW**SLOPE THAN THE DLAS
 - PHASE-TRANSITION, I.E. ZHENG& MIRALDA-ESCUDE (2002)
 - NEUTRAL TO IONIZED
 - * AKIN TO HI EDGES IN LOCAL GALAXIES
- SHALLOW BUT NOT SHALLOW ENOUGH
 - + STILL TOO MANY LLS
 - \star $\alpha = -1$ IS LIKELY AT $N_{HI} < \sim 10^{19} \text{ cm}^{-2}$
- CLOSING THE GAP...

- SLLS f(N_{HI})
 - $f(N_{HI}) \sim N_{HI}^{-1.4}$
 - **◆ SHALLOWER POWER-LAW**SLOPE THAN THE DLAS
 - PHASE-TRANSITION, I.E. ZHENG
 MIRALDA-ESCUDE (2002)
 - NEUTRAL TO IONIZED
 - + AKIN TO HI EDGES IN LOCAL GALAXIES
- SHALLOW BUT NOT SHALLOW ENOUGH
 - + STILL TOO MANY LLS
 - + $\alpha=-1$ IS LIKELY AT $N_{HI}<\sim 10^{19}$ CM⁻²
- CLOSING THE GAP...

ZHENG & MIRALDA-ESCUDE (2002)

- slls $f(N_{HI})$
 - $f(N_{HI}) \sim N_{HI}^{-1.4}$
 - SHALLOWER POWER-LAW
 SLOPE THAN THE DLAS
 - PHASE-TRANSITION, I.E. ZHENG
 MIRALDA-ESCUDE (2002)
 - NEUTRAL TO IONIZED
 - + AKIN TO HI EDGES IN LOCAL GALAXIES
- SHALLOW BUT NOT SHALLOW ENOUGH
 - + STILL TOO MANY LLS
 - + $\alpha=-1$ IS LIKELY AT $N_{HI} < \sim 10^{19} \text{ cm}^{-2}$
- CLOSING THE GAP...

- SLLS f(N_{HI})
 - $f(N_{HI}) \sim N_{HI}^{-1.4}$
 - **◆ SHALLOWER POWER-LAW**SLOPE THAN THE DLAS
 - PHASE-TRANSITION, I.E. ZHENG
 MIRALDA-ESCUDE (2002)
 - NEUTRAL TO IONIZED
 - + AKIN TO HI EDGES IN LOCAL GALAXIES
- SHALLOW BUT NOT SHALLOW ENOUGH
 - + STILL TOO MANY LLS
 - + $\alpha=-1$ IS LIKELY AT $N_{HI}<\sim 10^{19}$ CM⁻²
- CLOSING THE GAP...

- SLLS $f(N_{HI})$
 - $+ f(N_{HI}) \sim N_{HI}^{-1.4}$
 - **♦ SHALLOWER POWER-LAW**SLOPE THAN THE DLAS
 - PHASE-TRANSITION, I.E. ZHENG
 MIRALDA-ESCUDE (2002)
 - NEUTRAL TO IONIZED
 - + AKIN TO HI EDGES IN LOCAL GALAXIES
- SHALLOW BUT NOT SHALLOW ENOUGH
 - + STILL TOO MANY LLS
 - $+ \alpha = -1$ IS LIKELY AT $N_{HI} < \sim 10^{19} \text{ cm}^{-2}$
- CLOSING THE GAP...

PROCTHER ET AL. (2007)

- LLS
 - **◆ ECHELLE SPECTRA OF FULL**LYMAN SERIES
 - + z>2.7
 - BLUE SPECTRA
 - MIKE, HIRES UPGRADE
- KECK/MAGELLAN SURVEY
 - + ~100 LLS
 - SELECTED ON THE BASIS OF LYMAN LIMIT ONLY
 - + PRIMARILY SDSS QUASARS
- CHALLENGING ANALYSIS
 - ONGOING WORK
 - **→ SEE PROCHTER ET AL. (2007)**

z~3 Summary of f(NHI)

WHERE IS THE HI GAS?

- CENSUS OF HI ATOMS
 - **→ INTEGRATE** f(N)NdN
 - **+ DLAS DOMINATE THE CENSUS**
 - ▶ SLLS CONTRIBUTE ~15%
- PREDOMINANTLY (X < 0.5)
 NEUTRAL GAS
 - **→ LYA FOREST = 0%**
 - + LLS ~ 5% (ESTIMATE)
 - + DLAs ~ 95%
 - EXPECT >90% OF THIS GAS TO
 OCCUR IN STAR-FORMING GALAXIES
 - I.E. SAME AS Z=O (BRIGGS ET AL.)
 - REMAINS TO BE SHOWN

WHERE IS THE H GAS?

WHERE IS THE H GAS?

WHERE IS THE H GAS?

WHERE ARE THE METALS?

- METALLICITIES
 - + DLAs: ~1/10 SOLAR
 - + LLS:
 - ▶ SLLS: 1/10 TO 1/3 SOLAR
 - **LLS: ??**
 - **♦ LYA FOREST**
 - > < 10-2 SOLAR
 - SCHAYE ET AL: $[C/H] = -3.5 + 0.65*log(\delta-0.5) + [O/C]$
- DISTRIBUTION
 - + NEAR FLAT
 - + BOUNDED
 - SEE NEXT TALK
- INTEGRAL (SUM)
 - **♦ LOWER THAN METAL BUDGET**EXPECTED FROM SFR
 - + How about the LLS?

SUMMARY AND PARTING QUESTIONS

- f(N_{HI}) for DLAs
 - + -1.8 FAINT-END SLOPE
 - ◆ BREAK AT LOG N_{HI} ~ 21.5
 - ▶ H₂ FORMATION?
- f(N_{HI}) FOR LLS
 - **→ FLATTENING FOR LOG N_{HI} ~ 19**
 - + SIGNATURE OF PHOTOIONIZED 'DISK' ?
- BARYON BUDGETS
 - + DLA: HI MASS (I.E. GALAXIES)
 - + LYA FOREST: BARYONIC MASS
 - **+ METALS: EVENLY DISTRUBUTED?**
- WHAT IS $f(N_{HI})$ FROM 10¹⁵ TO 10¹⁹ CM⁻²?
 - **♦ WHAT IS THE REDSHIFT EVOLUTION, E.G. DUE**TO THE EUVB RADIATION FIELD?
- What are the physical origins of the wiggles in $f(N_{HI})$?
- WHAT IS $f(N_{H2})$?