A new perspective on the fate of extended HI in spiral galaxies

David Thilker (JHU) et al. Spineto, Italia -- June 2007

Quiescent outer HI disk, or not?

NGC 5055 (M63)

HI (VLA), THINGS F. Walter

Quiescent outer HI disk, or not?

NGC 5055 (M63)

DSS2
"red"

Quiescent outer HI disk, or not?

NGC 5055 (M63)

GALEX FUV

The prototype: M83

Outer disk gas is undergoing conversion to an extended stellar component via secondary SF mechanisms.

UV isn't dust-scattered or from hot evolved stars, but loose OB groupings.

Thilker et al. (2005)

NGC 4625 also...

Outer disk gas is undergoing conversion to an extended stellar component via secondary SF mechanisms.

UV isn't dust-scattered or from hot evolved stars, but loose OB groupings.

Gil de Paz et al. (2005)

Continuing disk galaxy formation

- Extended UV-disk
 (XUV-disk) galaxies
 - Outer disk SF detected previously in only a handful of objects via Hα imaging (e.g. Ferguson et al. 1998).
 - GALEX => seemingly commonplace!!

XUV-disk relevance to "HI Survival"

- SF in low-surface brightness, low-N(HI), low-metallicity environments
- Local inside-out galaxy formation -- perhaps analogous to high z disk assembly?
- Indicative of gas feeding modes
- Gas consumption and enrichment of outer disk
 => implications re. QSO abs. lines

What's an XUV-disk?

- We inspected a sample of 189 S0-Sdm galaxies in the **GALEX Atlas** with D < 40 Mpc, $i < 80^{\circ}$, angular size $> 90^{\circ\prime\prime}$, and A(V) < 0.5 mag
- Two independent definitions catch all cases:
 - Type 1 XUV-disks have structured, UV-bright emission complexes beyond the "anticipated" location of the SF threshold.
 - Type 2 XUV-disks have blue UV-NIR within an exceptionally large, outer, optically-LSB zone.

• *Type* 1

• *Type 2*

• Mixed-type XUV-disks meet both criteria

(Thilker et al. 2007a, submitted)

Type 1: Where to expect a SF threshold?

- Boissier et al. (2007) found that near the apparent $H\alpha$ threshold radius, the GALEX UV Σ_{SFR} is generally ~3x10⁻⁴ M $_{\odot}$ yr⁻¹ kpc⁻² for the galaxies of Martin & Kennicutt (2001)
- Spatially resolved Schmidt Law analysis (Thilker et al. 2007b) shows that for the critical N(HI) derived by Schaye (2004) allowing the CNM phase, we expect similar Σ_{SFR} levels

Boissier et al. (2007)

• *Type* 1

• *Type 2*

• Mixed-type XUV-disks meet both criteria

(Thilker et al. 2007a, submitted)

Type 2: Defining an outer "LSB zone"

- K₈₀ contour encloses 80% of the K-band galaxy emission, generally excludes only faint features
- LSB zone defined to lie between K₈₀ contour and GALEX "threshold" contour
 - This would ideally include outer (Type 1) clump complexes, but hard to do in practice

• *Type* 1

• *Type 2*

• Mixed-type XUV-disks meet both criteria

(Thilker et al. 2007a, submitted)

Characteristics of the XUV-disk population

- Type 1: ~20%, no preferred T
 - Environment/perturbation matters most?
- Type 2: ~10%, T>5 usually
 - Galaxy-wide burst only for low mass objects?

- Very high sSFR for Type 2, $t_{form} < 1$ Gyr
- XUV-disks are ~2x more gas-rich on average

NGC 1512/10

04^h 04^m 4530^s

15^S 00^S 03^M 45^S 30^S Right Ascension (J2000)

Role of interaction?

15^S

Type 1 XUV-disks are more perturbed than the overall sample, but not often trainwrecks. Type 2 galaxies are comparatively isolated.

Other evidence for interaction?

- Subtle signatures of environmental perturbation:
 - Asymmetry (visible or UV) or pec. morph.
 - Anomalous HI (filaments, HVCs, extraplanar gas)
- Such evidence in ~75% Type 1, ~50% of Type 2
 - But what about non-XUV's?

SF at low... abundance surface brightness or Σ_{stars}

- Similar to prevailing conditions in early universe? (Not Pop III, but still illustrative)
- Probabilistic, not deterministic process
- Stochastic effects: IMF and SFR tracers

- $H\alpha$ SFR tracer only suitable for log SFR > -3
 - otherwise incomplete!
- H α / UV dropout probably due to stochastic incompleteness, low density HII, high-porosity, IMF sampling / change?
- Secondary pathways of initial cloud collapse such as spiral shocks, turbulence compression are important in outer disk (Elmegreen & Hunter 2006)
- Rather than use discrete SF threshold, one should construct a multivariate PDF

HST followup on M83

Thilker et al. 2007c, in prep.

ACS/SBC (F150LP)

GALEX FUV, NUV

XUV-disk sources

- L(Hα) is
 consistent with
 ionization by a
 single massive
 star in some cases
 - IMF sampling
 - Upper limits in outer XUV-disk
- Total stellar mass per cluster tends to decrease with radius.

SF at low...

Σ_{gas} abundance

surface brightness or Σ_{stars}

Malin 1 (GALEX, HST)

- Implications for LSB galaxies
 - Massive LSBs are likely extreme XUV-disks
 - LSB dwarfs ($H\alpha$ SFRs -- underestimates?)

Inside-out disk formation

- XUV-disks mesh well with the concept of inside-out disk formation
 - Type 1 => residual assembly following the primary epoch of disk building at higher z?
 - Type 2 => galaxies experiencing non-linear inside-out formation, due to enhanced gas accretion?
- Do all spirals undergo an XUV phase??

UV vs. optical appearance

- Optical surface brightness profiles for spirals are increasingly complex at low levels
 - Only 10% pure exponential (Pohlen et al.)
- Our survey shows XUV relation to opt. profiles remains unclear
 - "Anti-truncated" disks (Erwin et al. 2005,
 Pohlen & Trujillo 2006) without XUV SF
 - Down-bending broken exp. with XUV SF

UV-opt. profiles in NGC 4625

- (NUV-B) gets
 progressively
 bluer in XUV
 disk outside D₂₅
- Population change [SFH] continues within XUV disk
- Hα deficit, but not as pronounced...

Gil de Paz et al. (2005)

Modes of gas feeding

- Galaxy interaction/mergers (NGC 1512, M81)
- Hot and Cold IGM accretion (e.g. Keres et al.)
 - Type 2 XUV-disks have low mass, similar to that for which cold accretion is dominant.
- Recycled gas from inner disk fountain?

Gas consumption and metal enrichment

- Little to say on this yet... except:
 - Outer HI is being converted to stars in-situ
 - Massive SF implies "post accretion" enrichment, influences QSO abs. interpretation.
 - 1/10th solar abundance in some XUV-disk environments (M83, NGC 4625)
 - More multi-slit spectra being obtained.

