Comparing gas in galaxies and DLAs

Martin Zwaan (ESO)

HI at high and low z

low redshift

- 21-cm
- emission
- 21-cm emission weak: limited to local Universe
- 3D data cube
- study of galaxy easy

high redshift

- Lyα
- absorption
- only limited by brightness of background QSO
- only info along sightline to QSO
- study of host galaxy hard

local HI: The HI mass function

- measured from blind 21-cm surveys:
 - AHISS: HI strip Survey (Zwaan et al 1997)
 - AS: Arecibo Slice (Spitzak & Schneider 1998)
 - ADBS: Arecibo Dual Beam Survey (Rosenberg & Schneider 2000)
 - **HIPASS**: HI Parkes All Sky Survey (Zwaan, Meyer et al 2003/2004/2005)
 - ALFALFA: Arecibo Legacy Fast ALFA Survey (Giovanelli et al 2005)

local HI: The HI mass function

- measured from blind 21-cm surveys:
 - AHISS: HI strip Survey (Zwaan et al 1997)
 - AS: Arecibo Slice (Spitzak & Schneider 1998)
 - ADBS: Arecibo Dual Beam Survey (Rosenberg & Schneider 2000)
 - **HIPASS**: HI Parkes All Sky Survey (Zwaan, Meyer et al 2003/2004/2005)
 - ALFALFA: Arecibo Legacy Fast ALFA Survey (Giovanelli et al 2005)

Blind survey covering whole southern sky up to dec=+25°. 5300 detections

local HI: results from blind surveys

- •The universe seen in 21-cm is similar to that seen in the optical
- No large population of dark or very LSB galaxies
- •Ω_{HI} dominated by L* galaxies

local HI: results from blind surveys

- •The universe seen in 21-cm is similar to that seen in the optical
- No large population of dark or very LSB galaxies
- •Ω_{HI} dominated by L* galaxies

What can we learn from **local galaxies** to understand **DLAs**?

Treat local galaxies as if they were DLAs and calculate "DLA statistics".

QSO absorption line statistics from local galaxies:

QSO absorption line statistics from local galaxies:

DLA measurements to explain:

DLA measurements to explain:

- f(N)
- dN/dz
- DLA galaxy properties
- impact parameters
- metallicities
- abundance of molecules
- kinematics

WHISP:

WSRT HI maps of 350 galaxies
Resolution: 15"

(van der Hulst et al)

WHISP:

WSRT HI maps of 350 galaxies
Resolution: 15"

(van der Hulst et al)

THINGS:

VLA HI maps of 35 galaxies
Resolution: 5"
(Walter et al)

WHISP:

WSRT HI maps of 350 galaxies
Resolution: 15"

(van der Hulst et al)

THINGS:

VLA HI maps of 35 galaxies
Resolution: 5"
(Walter et al)

SONG:

BIMA CO maps of 44 galaxies Resolution: 6" (Helfer et al)

WHISP:

WSRT HI maps of 350 galaxies
Resolution: 15"

(van der Hulst et al)

THINGS:

VLA HI maps of 35 galaxies
Resolution: 5"
(Walter et al)

SONG:

BIMA CO maps of 44 galaxies Resolution: 6" (Helfer et al)

800,000 'DLAs'

HI column density distribution evolves slowly

HI column density distribution evolves slowly

- Shape of f(N) is constant in time
- HI distribution in galaxies at z=3 similar to that today?
- Star formation laws similar at higher z?

HI column density distribution evolves slowly

 Most of the HI atoms in column densities around 10²¹ cm⁻²

Local galaxies can explain incidence rate

 Local galaxies explain dN/dz of DLAs at z<1.5

Local galaxies can explain DLA galaxy properties

- our analysis: 80% of DLA hosts in sub L* (35% in L< L*/10)
- from z<1 DLA surveys: 75% of DLA hosts in sub L* (15% in L< L*/10)

Local galaxies can explain DLA impact parameters

from our analysis: median b: 7.8 kpc from literature: median b: 8.3 kpc

implication for DLA host galaxies: 34% should have b<1" at z=0.5 46% should have b<1" at z=1

Local galaxies can explain DLA metallicities

Metallicity distribution asuming:

- ◆ Z-L relation (Garnett 2002)
- ◆ Z-gradients (Vila-Costas & Edmunds 1992, Ferguson et al 1998)

 Agreement in metallicities between local galaxies and DLAs

What about the molecules?

- DLAs contain the reservoir for star formation
- Star formation occurs in molecular clouds
- → DLAs should contain molecules

- surveys for millimetre molecular absorption have been unsuccessful (Curran et al 2004, Wiklind & Combes,...)
- optical/UV surveys for H₂ have **low success rate** and find very **low H₂ fractions** (10⁻³ 10⁻²) (e.g., Ledoux et al 2003)

f(N) for molecular gas

- Use CO maps from BIMA-SONG (Helfer et al 2003) to derive f(N_{H2})
- $dN/dz (N_{H2}>10^{21}) = 3\times10^{-4}$
- >100 times lower than that for HI in DLAs
- molecular surveys in DLAs unsuccessful

Molecules are at small impact parameters

 90% of H₂ mass within impact parameters of 6.5 kpc

Molecules are at small impact parameters

 90% of H₂ mass within impact parameters of 6.5 kpc

GBT program looking for OH in systems with small impact parameters (Zwaan, Peroux, Murphy, Zych, Curran, Liske, Bouche):
No detections...

Implications for cosmic SFR density

SFRD as function of HI and H_2 (at z=0):

Even though H_2 has very small cross section, it contributes significantly to Ω_{gas} and the SFRD

Can local galaxies explain DLA kinematics?

- Velocity spread of DLA characterized by ΔV₉₀ of low-ions: Fe⁺, Si⁺, Ni⁺
- Calculate ΔV_{90} maps from THINGS data:
- Not the same spatial resolution for DLAs galaxies...
- Is THINGS a fair sample?

Can local galaxies explain **DLA kinematics?**

- At higher z larger contribution from:
- Superwinds? (see also Schaye 2001, Nulsen et al 1998, Bouche et al 2007)
- Mergers? (tidal tales etc)

Conclusions

- Most HI atoms in L* galaxies and around log N_{HI}=21
- Local galaxies explain most low z DLA properties
- We understand why we don't see H₂ in DLAs... but it's there
- SF probably associated with this high N_H gas
- High z DLA kinematics cannot be explained with disks