Molecular Cloud Fragmentation: Self-Gravity, Magnetic Fields, Ambipolar Diffusion, and Nonlinear Flows

Shantanu Basu

The University of Western Ontario

Collaborators: Glenn Ciolek (RPI), Takahiro Kudoh (NAOJ), Wolf Dapp, James Wurster (UWO)

SFR@50 Meeting
Spineto, Italy
Thursday, July 9, 2009

Star Formation Rate

Regulated (to what extent) by:

$$\Delta \mathbf{v}, B, x_i$$

i.e., nonlinear/nonthermal motions (turbulence, MHD waves) magnetic field strength (really mass-to-flux ratio $\mu = 2\pi G^{1/2}\Sigma/B$) ionization fraction (sets neutral-ion coupling)

$\mu \approx 1$ (transcritical) is interesting

For CR ionized sheet, with half thickness Z_0 .

numbers from Ciolek & Basu (2006)

Taurus — B dominated envelope?

Pipe Nebula – more B effect?

Magnetically regulated cloud formation?

Pipe (and Taurus)
→ formed by flow or contraction along B?

Alves, Franco, & Girart (2008)

GMC Fields align with Galactic B

H. Li et al. (2006)

MC progenitors are H I Clouds

Flux freezing in HI gas → Critical or supercritical MC formation requires significant accumulation of mass ALONG the magnetic field.

Hard to accumulate supercritical MC rapidly

$$L \cong \frac{B}{2\pi G^{1/2}\rho} \cong 150 \left(\frac{\mu}{1}\right) \left(\frac{B}{3\times 10^{-6} \text{ G}}\right) \left(\frac{n}{1 \text{ cm}^{-3}}\right) \text{ pc},$$

$$v = \frac{L}{t} \approx 150 \left(\frac{\mu}{1}\right) \left(\frac{B}{3 \times 10^{-6} \text{ G}}\right) \left(\frac{n}{1 \text{ cm}^{-3}}\right) \left(\frac{t}{10^6 \text{ yr}}\right)^{-1} \text{ km/s.}$$

Mestel (1999), Stellar Magnetism, and earlier papers quote even larger value, 10³ above, not 150.

Bottom line: Highly supercritical MC AND rapid formation time *t* is troublesome!

Scenario

3D Trans-Alfvénic Model → Rapid but Inefficient SF

Originally $64 \times 64 \times 40$ cells, now $256 \times 256 \times 40$

Kudoh & Basu (2008, ApJ, 679, L79)

How Does Turbulent Ambipolar Diffusion Work?

Runaway collapse of the first core occurs ~ 7 times faster with nonlinear as opposed to small-amplitude IC's.

Early turbulent compression

$$\tau_{AD} \propto L^{5/2} \Rightarrow \beta \uparrow \text{ quickly as } L \downarrow$$

Kudoh & Basu (2008)

Later evolution at higher mean density than in initial state

 $\beta \uparrow$ continues more slowly

Rapid contraction when/where $\beta > 1$.

Animation with Field Lines

Thin disk approx. - from models of Basu, Ciolek, Dapp, & Wurster (2009, NewA, 14, 483)

SFR Related to Timescale for Runaway Collapse

Accelerated collapse (some oscillations before collapse)

$$t_{coll} \ge 2\pi Z_0/c_s$$

≈ system dynamical time

Prompt collapse

$$t_{coll} \approx Z_0/v_a$$

less than dynamical time

for ionization fraction $x_i = 10^{-7} (n_n / 10^4 \text{ cm}^{-3})^{-1/2}$

Expect much greater SFR, especially for driven super-Alfvénic turbulence.

Basu, Ciolek, Dapp, & Wurster (2009)

Super-Alfvénic Model Fails

Velocity cuts through cores

Super Alfvénic → highly supersonic infall and immediate SF.

LP = initial Linear Perturbations

NLP = initial Nonlinear Perturbations $v_a = 2c_s \rightarrow \text{Super-Alfvénic for } \mu_0 = 2$.

Turbulent Decay

Stone, Ostriker, & Gammie (1998), MacLow et al. (1998), Ostriker, Stone, and Gammie (1999; image above) and many others.

3D local (periodic box) simulations. Left: integrated column density and simulated polarization maps (Ostriker et al. 1999)

Important result: turbulence decays away on crossing time of characteristic length scale. A robust result for infinite uniform medium.

Turbulent Decay in our models – usually fast, but...

How can fluctuations persist?

Results and Emerging Scenario

- Thin disk model yields long lived supersonic motions. Effectively flux-frozen (UV ionized, e.g. McKee 1989) cloud envelopes can, if subcritical, maintain indefinite oscillations due to restoring force of externally-anchored *B*. Future...fully global models.
- Meanwhile, 3D models → inner CR ionized regions can undergo turbulence accelerated ambipolar diffusion → rapid core formation.
- SF Rate implications: Trans-Alfvénic turbulence leads to accelerated but low efficiency SF. Super-Alfvénic turbulence leads to prompt SF with very high velocity flows in core vicinity ruled out generally.

More: see poster by Wolf Dapp