

Alberto Bolatto (UMd)

Adam Leroy (MPIA-H), Nurur Rahman (UMd), Karl Gordon (STScI) & the mega-SAGE collaboration, the STING collaboration (Tony Wong, Leo Blitz, Frank Bigiel, Daniela Calzetti, Fabian Walter, +)

Background: low metallicity and the SF law

- Low metallicity local dwarf galaxies and outer galaxy disks are some of the most discrepant objects when placed on the molecular star formation law (c.f., RCK's talk)
- I will argue that this is mostly a result of imperfect estimates of H₂ surface densities

Background: low metallicity and the SF law

Surface Density [M_☉ yr⁻¹ kpc⁻²]

• Low metallicity local dwarf galaxies and outer galaxy disks are some of the most discrepant objects when placed on the molecular star formation law (c.f., RCK's talk)

I will argue that this is mostly a result of imperfect estimates of H₂ surface densities

Background: CO is a flawed tracer of molecular gas

- Surveys show that HI-rich dwarfs are faint in CO
- Despite strong
 (mass-normalized)
 star formation
 activity, no galaxies
 with Z<1/5 Z_o have
 been detected
- Usually attributed to enhanced photodissociation of CO, due to diminishing dust UV shielding

Maloney & Black (1988); Lequeux et al. (1994); Bolatto et al. (1999); Röllig et al. (2006)

Background: a different way to trace H₂

CO is expected to be biased at low metallicities. FIR dust emission offers another view.

Traces the total gas $(HI + H_2)$ *column.*

Probably better, at least 'differently biased.'

In the Galaxy, matches Gamma Ray and CO results very well (Dame, Hartmann, & Thaddeus 2001).

In the SMC, IRAS suggests much more H_2 , than seen from CO (Israel 1997)

Method:

$$\Sigma_{\text{H2}} = (\Sigma_{\text{dust}} \times DGR^{-1}) - \Sigma_{\text{HI}}$$

Estimate the **dust surface density** from τ using FIR emission (need two bands to make a temperature estimate).

Measure the **dust-to-gas ratio** from the ratio of dust to atomic gas away from the molecular line emission but near enough to calibrate out galactic variations.

Straightforward to determine from **21 cm** observations, modulo optical depth effects (estimates exist for the Magellanic Clouds).

Background: Results from 2007 analysis using S³MC

- Using 100 and 160 um to avoid influence of stochastic heating. Limited to ~4' (80 pc) by IRAS.
- Using Dale & Helou (2000) models to account for multiple temperature comps.
- DGR determined locally.
- Conclusions: Large Xco correction (30-60 times Galactic). $M_{H2}\sim 3x10^7~M_{sun}$ total molecular mass, compared to $M_{HI}\sim 2x10^8~M_{sun}$. Similar pressure relation as large spirals.

SMC SAGE MIPS IMAGING

- Better zero-point calibration and artifact mitigation
- Larger coverage
- New methodology to remove out-of-equilibrium emission at 70 um and reach 10 pc resolution

Fraction of obscured SF according to the Calzetti et al. (2007) calibration is localized and small: we use H α +24 um but **most** of the correlation comes from H α

Fraction of obscured SF according to the Calzetti et al. (2007) calibration is localized and small: we use H α +24 um but **most** of the correlation comes from H α

The Schmidt law in the LMC

A systematic sampling of the blue sequence

Conclusions: Metallicity and Star Formation

- 1. At least in the case of the SMC, the driver for the SFR is the H₂ fraction:
 - The molecular SFL is very similar to large spirals
 - The total gas SFL is radically different: higher saturation value for Σ HI
 - Good news for Dawn Erb and other fans of SFR->M_{H2} at low Z
 - Explains results for DLAs too (Wolfe & Chen 2006)
- 2. Caveat astrologus: beware of CO in outer disks/low metallicity
 - Yes, we will measure it (ALMA, etc), but what does it mean?
- **3.** What is the "prime mover"?

- 4. How does translucent H₂ participate in star formation?
 - Isn't large Av necessary for decoupling and collapsing?
 - Aren't molecular lines needed for cooling?