

Hsiao-Wen Chen

University of Chicago / KICP

Collaborators

Josh S. Bloom (UC Berkely)

Miroslava Dessauges-Zavadsky (Geneva Observatory)

Sebastian Lopez (Universidad de Chile)

Daniel A. Perley (UC Berkeley)

Lindsey K. Pollack (UC Santa Cruz)

Jason X. Prochaska (Lick Observatory)

Outline

- **♦** The origin of long-duration GRBs
- **♦ Known ISM properties from afterglow absorption-line studies**
- ◆ The nature of the GRB host galaxy population from late-time imaging follow-ups

Long-duration GRBs are Signposts of Distant Star-forming Regions

- Association with core-collapse Ic SNe (e.g. Woosley & Bloom '06)
- Spatial coincidence with UV light in latetype host galaxies at z ≤ 1

(e.g. Bloom+ '02, Fructher+ '06)

Fruchter et al. (2006)

GRB Afterglows as a Probe of Distant Universe

Extreme rest-frame luminosity

Simple spectral shape

Chen, Prochaska, Bloom, & Thompson (2005)

ISM Properties of GRB Host Galaxies from Early-time Afterglow Spectroscopy

- ♦ large neutral gas column, > 50% have log N(HI)>21, c.f. <15% of classical DLAs have such high N(HI) (Jakobsson+ '06)
 </p>
- ◆ a broad range of metallicity from 1/100 solar to 1/2 solar

(Fynbo+ '06; Savaglio '06; Prochaska+ '07)

◆ UV pumped O⁰, Si⁺, and Fe⁺ are commonly seen in GRB host galaxies, allowing distance estimates of 0.1-1 kpc (Prochaska+ '06; Vreeswijk+ '07; D'Elia+ '08)

ISM Properties of GRB Host Galaxies from Early-time Afterglow Spectroscopy (cont'd)

♦ Complex absorption profiles revealing a turbulent velocity field

(Prochaska, Chen, Wolfe, Dessauges-Zavadsky, & Bloom 2008)

Sill 1526 is saturated.

W₁₅₂₆ serves as a measure of the underlying gas kinematics.

ISM Properties of GRB Host Galaxies from Early-time Afterglow Spectroscopy (cont'd)

◆ large atomic gas column but little molecular gas content

(Fynbo+ '06; Tumlinson+ '07; Prochaska+ '09)

GRB080607 at z=3.04 CO 4-0 CO 8-0 0.0 Normalized Flux 0.0 1.0 0.5 CO 2-0 CO 6-0 CO 1-0 CO 1-0 Prochaska+ 09 CO 0-0 -500Relative Velocity (km s⁻¹) Relative Velocity (km s⁻¹)

QSO sightline

The glare of the background QSO makes it challenging to observe foreground DLA galaxies

GRB sightline

The transient nature of GRB afterglows allows late-time imaging search of faint galaxies along the sightline

A Survey of GRB Host Galaxies at z>2

- $\log N(HI) = 21.0 \pm 0.1$ $A_V = 0.08$
- GRB050820A @ z = 2.61
- $[S/H] = -0.63 \pm 0.11$
- $f_{\rm H2} < 10^{-6.5}$
- $[Fe/H] = -1.6 \pm 0.1$
- $\Sigma_{SFR} \sim 0.27 \text{ M}_{\odot}/\text{yr/kpc}^2$

A Survey of GRB Host Galaxies at z>2

GRB060206 @ z = 4.048

- $\log N(HI) = 20.85 \pm 0.10$
- [S/H] = -0.85 ± 0.15 (Thöne+ '08)
- $f_{\text{H2}} < 10^{-3.6} \text{ (Fynbo+ '06)}$
- $M_{AB}(1600)$ 5 log $h = -17.7 \pm 0.1$

• ∑_{SFR} ~ 0.56 M_☉/yr/kpc²

A Survey of GRB Host Galaxies at z>2

GRB080607 @ z = 3.0363

• $M_{AB}(2000)$ - 5 log h > -17.3

♦ The luminosity distribution function

UV luminosity distribution of GRB host galaxies is consistent with a SFR weighted galaxy population

♦ Correlation between W₁₅₂₆ and L_{UV}

Cumul Fraction

starburst outflow or gravity driven velocity field?

near-IR spectra of the host galaxies are needed!

♦ Correlation between metallicity and Luv

□ LBGs from Erb et al. (2006)

x Simulations of LBGs from Sommer-Larsen & Fynbo (2008)

Summary

- ◆ The sample of long-duration GRB host galaxies is best described as a SFR weighted field galaxy population with a median luminosity of 0.1 L*.
- ◆ UV luminosity of GRB hosts appears to be correlated with the velocity spread of absorption gas clumps. Follow-up near-IR spectroscopy of the hosts is necessary to determine the origin of the velocity field.
- **♦** The *luminosity-metallicity relation* observed in GRB hosts offers a unique window for testing star formation and feedback recipes in distant low mass galaxies.