Cosmic Star Formation History in ACDM Cosmology

Metal cooling & SF model

Jun-Hwan Choi & Kentaro Nagamine University of Nevada Las Vegas

Metal cooling effect on cosmic SFR

- Motivation
 - Metal cooling can enhance SFR. But it has not yet been rigorously and quantitatively tested.
 - Hernquist & Springel 2003 claimed that metal cooling enhances SFR ~10% at low z (z<3): By increase IGM accretion
- Simulations (N-body/SPH simulation; Gadget-3)
 - $(\Omega_{\rm m}, \Omega_{\Lambda}, \Omega_{\rm b}, \sigma_{\rm 8}, h) = (0.3, 0.7, 0.04, 0.85, 0.7)$
 - Metal enrichment due to star formation and SNe II
 - Metal cooling uses Sutherland & Dopita 1993.
 - Runs
 - N216L10 : 10 h^{-1} Mpc with 2×216³ particles up to z=3
 - N288L34: 33.5 h^{-1} Mpc with 2×288³ particles up to z=1

Cosmic Star Formation History

How Does Metal Cooling Enhance SFR?

- Metal cooling enhances gas cooling.
- Increase IGM accretion to galaxy
 - Only in low z (z < 3) → Need time to mix
- Increases SF efficiency (ISM to star conversion in a galaxy)
 - Short mixing time
 - All redshifts

Increased SF efficiency reduces f_{gas} for given galaxies (z > 3)

How to increase SF efficiency? Gas Phase Diagram at z=3

Kennicutt-Schmidt Law

- Metal cooling enhances SFR without violating Kennicutt law.
- Metal cooling increases gas density and denser gas causes enhanced SF.
- Over prediction in low density
- Low density threshold $(10^{20} \text{cm}^{-2} \sim 1 \text{ M}_{\odot} \text{ pc}^{-2})$
- Need to test SF model

Star formation model

- Previous model (Springel & Hernquist 2003 : SH model)
 - Based on Kennicutt-Schmidt law: $t_{sfr} = t_o (\rho/\rho_{th})^{1.5}$, where t_o is 2.1 Gyr
 - Multiphase SPH particle: Hot phase and cold phase
- Issues of star formation in cosmological simulation
 - Predict large population of high z stars
 - Peak of the Madua plot z~5 in simulations (z~3 in observations)
 - The $\Sigma_{\rm SFR}$ is a function of $\Sigma_{\rm H_2}$ instead of $\Sigma_{\rm gas}$
 - Assuming the constant disk scale height Σ_{gas} / Σ_{SF} = ρ_{gas} / ρ_{SF}
 - More issues in KS law

Testing New Star formation model

- Pressure model
 - Σ to ρ : using Jeans column density from Schaye & Dalla Vecchia 2008
 - $\Sigma_{gas} = \rho L_J$
 - Including a scale height dependence
 - Including the disk instability
 - May capture contribution of Σ_{H_2}
 - Using the polytrophic EOS for cold gas with $\gamma_{eff} = 4/3$
 - Reduce artificial collapse around Jeans equilibrium
- Simulations:
 - $(h, \Omega_{\Lambda}, \Omega_{m}, \Omega_{b}h^{2}, n_{s}, \sigma_{8}) = (0.72, 0.74, 0.26, 0.022, 0.96, 0.8)$
 - N216L10: 10 h-1Mpc with 2×216³ particles up to z=3
 - N400L100: 100 h-1Mpc with 2×400³ particles up to z=0

Star formation density relation

- Pressure model suppresses over-prediction at low density
- Pressure model reproduces proper SF density threshold
- Slop depends on n and EOS

Cosmic Star Formation History

Hernquist & Springel 2003 with metal cooling effect

Evolution of Global Stellar Mass Density

- The stellar mass from integrating SMFs over M_{star}/M_o > 10⁸
- The Pressure model shows low stellar mass density at high redshifts.
- Issues
 - Discrepancy in low z
 - May need better outflow (+BH)
 - Poor Resolution
 - Simulation : difference between N400L100 and N216L10
 - Observation : 10⁸ M_o mass cut-off

Marchesini et al 2008

Summary

- Metal cooling enhances SFR in two ways
 - Increase IGM accretion to galaxies
 - Increase SF efficiency by increase gas density: ISM to star
 - Metal cooling enhance SFR through entire history of galaxy formation (~ 20 % at high z and ~ 50 % at law z)
- New Star formation model
 - Reduction of the over-prediction SFR in low density region and reproduce a correct density threshold
 - Suppression of early star formation
 - The peak location of the cosmic SF history is shifted to lower z
 - Better agreement with observations
 - More refinement in the KS law: Threshold density evolution