Galaxy Formation at High Redshift:

Cold Streams, Clumpy Disks & Compact Spheroids

Avishai Dekel, HU Jerusalem SFR@50, July 2009

Collaborators

Simulations:

- R. Teyssier (Paris)
- A. Kravtsov (Chicago)
- D. Ceverino (HU)
- F. Bournaud (Paris)

HU Team:

- Y. Birnboim (CfA)
- D. Ceverino (HU)
- J. Freundlich (Paris)
- T. Goerdt (HU)
- E. Neistein (MPA)
- R. Sari (HU)
- E. Zinger (HU)

Outline

- Star-forming disks and quenched ellipticals at high redshift. mergers?
- Feeding massive galaxies by cold streams inflow rate vs SFR, smooth flows vs mergers
- Disk fragmentation & bulge formation steady state, migration to a bulge, star formation, stabilization by clumpy streams
- Origin of bimodality at high redshift

1. Observed Bimodality at High z

in $\sim 10^{11} M_{\odot}$ galaxies at $z \sim 2-3$:

Intense star formers: SFR~150 M_oyr⁻¹ clumpy, rotating, extended, gaseous disks

Suppressed SFR in compact spheroids

Major mergers? starbursts & spheroids

Standard Paradigm: Mergers

halos cold gas \rightarrow young stars \rightarrow old stars Gas removal by QSOs leads to red-and-dead Ellipticals

A typical star-forming galaxy at z=2: clumpy, rotating, extended disk & a bulge

Open Questions

- Efficient cold gas supply to massive galaxies?
- High SFR not through major mergers?
- Clumpy, extended, think disks?
- Early formation of so many spheroids?
- Suppression of SFR?

2. Cold Streams in Hot Massive Halos at High z

Birnboim & Dekel 2003

Keres et al. 2005

Dekel & Birnboim 2006

Keres et al. 2008

Ocvirk et al. 2008

Dekel et al. 2009, Nature

Shock-Heating Scale

Birnboim & Dekel 03 Dekel & Birnboim 06

At High z, in Massive Halos: Cold Streams in Hot Halos

Cold Streams in Big Galaxies at High z

 $\begin{matrix} \textbf{M}_{\text{vir}} \\ [\textbf{M}_{\text{o}}] \end{matrix}$

Gas Density in Massive Halos 2x10¹²M_o

Ocvirk, Pichon, Teyssier 08

Critical Mass in Cosmological Simulations

Ocvirk, Pichon, Teyssier 08

Stream Properties

Dekel et al. 2009, Nature

Massive high-z disks by cold narrow streams

Gas density: following dark-matter filaments

Entropy: virial shock & low-entropy streams

Inward gas flux: all in the streams

$$\dot{m} = \rho v_r r^2 [M_{\odot} yr^{-1} rad^{-2}]$$

Flux per solid angle

Lyman-alpha Luminosity Function

Goerdt, Dekel, Sternberg, Ceverino, Teyssier 09

Gas inflow rate vs observed SFR

Dekel et al. 2009, Nature

Average Accretion Rate into a Halo

Neistein, van den Bosch, Dekel 06; Neistein & Dekel 07, 08

From N-body simulations or EPS, Approximate for LCDM:

$$\langle \dot{M}_b \rangle_{vir} \approx 6.6 \, M_{\odot} \, yr^{-1} \, M_{12}^{1.15} (1+z)^{2.25} \, f_{0.165}$$

 $M=2\times10^{12}M_{\odot}$ z=2.2 \rightarrow dM/dt ~ 200 M_{\odot} yr⁻¹

May explain the Star Forming Galaxies if

- the streams penetrate efficiently to the disk
- the streams are gas rich
- SFR follows rapidly

Inflow Rate into the Disk

At $z\sim2-3$, $M\sim10^{12}M_{\odot}$, the input rate into the disk is comparable to the infall rate into the virial shock, most of it along narrow streams

R [kpc]

Conditional Distribution of Gas Inflow Rate

Comoving Number Density of Galaxies as a function of gas inflow rate

 $(>\dot{M})$ [Mpc⁻³]

$$n(\dot{M}) = \int_{0}^{\infty} P(\dot{M} \mid M) n(M) dM$$

Assume scaling of P(Mdot|M)

 $\dot{M}_b \approx 6.6 \, M_{\odot} yr^{-1} M_{12}^{1.15} (1+z)^{2.25}$

n(M) by Sheth-Tormen

Gas inflow rate > SFR but by a small margin
→ SFR very efficient!

Smooth Flows vs Mergers

Streams in 3D: partly clumpy

Half the stream mass is in clump >1:10

Birnboim, Zinger, Dekel, Kravtsov

Inflow Rate into the Disk

on average, 33% of the flux is in mergers > 1:10

but the duty cycle is < 10%

Fraction of Mergers

3. Disks with Giant Clumps

Chain Galaxies - Fragmented Disks

NICMOS H₁₆₀ Foerster Schreiber, Shapley et al. 2008

Genzel et al. 2008, Foerster Schreiber et al. 2008b, Elmegreen & Elmegreen 2005, Elmegreen et al. 2007

Clumpy Disks with Bulges

Genzel et al. 08; Förster Schreiber et al. 20

 $M(\le 3 \text{ kpc})/M(\le 15 \text{ kpc}) \sim 0.2-0.4$

A rotating "chain" of clumps with a bulge

z~2 disks are turbulent

Genzel et al. 2008

Disk Breakup into Giant Clumps Migration, Spheroid & Stabilization

Dekel, Sari, Ceverino 2009

Isolated, gas-rich, turbulent disk - giant clumps - migration - bulge

Formation of an exponential spiral disk and a central bulge

from the evolution of a gas-rich primordial disk evolving through a clumpy phase

Models from Bournaud, Elmegreen & Elmegreen 2007

Noguchi 99;

One episode of 0.5 Gyr?

green 06, 08

A Disk Fed by Cold Streams

Disk Buildup by Streams

- Smooth streams build a gaseous disk
- A stream with a large impact parameter determines the disk spin
- Clumpy streams generate turbulence

Disk - Giant Clumps - Bulge

Dekel, Sari, Ceverino 09

Toomre instablity:

$$Q \approx \frac{\sigma \Omega}{\pi G \Sigma} \le 0.67$$

Giant clumps:

$$R_{\rm clump} \approx \frac{7 G \Sigma}{\Omega^2}$$

Disk fraction:

$$\delta \equiv \frac{M_{\rm disk}}{M_{\rm tot}(R_{\rm disk})}$$

matter

$$\frac{M_{\rm baryon}}{M_{\rm tot}(R_{\rm disk})} \approx 0.6$$

$$\delta \approx \frac{\sigma}{V}$$

$$\approx \frac{1}{3}$$

$$1 \approx Q \approx \delta^{-1} \frac{\sigma}{V}$$

$$\frac{m_{\rm clump}}{M_{\rm disk}} \approx 0.02 \,\delta_{0.3}^2$$

Self-regulation at $Q \sim 0.67$:

Clump encounters vs Dissipation of turbulence

$$t_{\text{enc}} \approx 2 \alpha^{-1} Q^4 t_{\text{dyn}}$$
$$t_{\text{dis}} \approx 1.4 Q^{-1} t_{\text{dyn}}$$

$$\alpha = \frac{\sum m_{\text{clump}}}{M_{\text{disk}}} \approx 0.2$$

Migration to the center by collisions and dynamical friction

$$t_{\rm mig} \approx 2 Q^2 \delta^{-2} t_{\rm dyn}$$

$$t_{\rm evac} \approx \alpha^{-1} t_{\rm mig}$$

Angular-momentum transfer + streams at outer disk \rightarrow disk extended x2 $t_{SFR} \sim t_{mig} \rightarrow$ dissipative coalescence into a compact spheroid

Bound Clumps and Transient Features

Cosmological Steady State

smooth streams $(1-\gamma)\dot{M}_{ac}$

 \dot{M}_{evac}

$$\dot{M}_{\text{disk}} = (1 - \gamma) \dot{M}_{\text{acc}} - \dot{M}_{\text{evac}}(\delta)$$

$$\dot{M}_{\text{bulge}} = \gamma \dot{M}_{\text{acc}} + \dot{M}_{\text{evac}}(\delta)$$

$$\dot{\delta} \approx 0.5(1 - \gamma - 2\delta) t_{\text{acc}}^{-1} - \delta t_{\text{evac}}^{-1}(\delta)$$

Evolution into Steady State

Cosmological Simulation: Stream-fed disk of giant gas clumps

Ceverino, Dekel 2009 AMR res: 70 pc $M_v=8\times10^{11} M_{\odot}$ z=2.1

Cosmological Simulation: Stream-fed disk of giant gas clumps

Ceverino, Dekel 2009 AMR res: 70 pc $M_v=8\times10^{11} M_{\odot}$ z=2.1

Clump Formation & Migration

Disk Clumps vs Stream Clumps 1.7 2.2 young stars gas 3.1 2.7 3.4 2.4 2.8 2.1 2.2 1.7 1.5 dark matter stars

Observations vs. Simulations

Star Formation and Feedback

Predicted accretion rate versus observed SFR →

$$\dot{M}_{*} \approx \dot{M}_{\rm acc}$$

$$\rightarrow$$
 SFR efficiency per t_{dyn} in clumps: $\eta = \frac{\dot{M}_*}{(\sum m_{\text{clump}})/t_{\text{dyn}}} \approx 0.06 \ \delta_{0.3}^{-1}$

if require $\eta \sim 0.01 \rightarrow \text{star}$ formation in denser sub-clumps

Clumps not disrupted by SN feedback

$$\sigma > V_{SN} \approx \eta_{0.1}^{1/2} \times 30 \,\mathrm{km \, s}^{-1}$$

Clump disruption by radiative stellar feedback?

Murray et al.: 20% of the clump turn into stars in 1-2 t_{dyn} while the rest 80% gas is expelled back to the disk.

Clumps become smaller star clusters – slower migration.

Steady state is valid: disrupted clumps are replaced by new clumps. Disk evacuation into star clusters instead of migration.

$$t_{\rm SF} \approx t_{\rm mig} \approx 10 \, t_{\rm dyn}$$

 $t_{\rm SF} \approx t_{\rm mig} \approx 10 \, t_{\rm dyn}$ But little burge buridup 57 mg. Are there enough mergers for spheroid buildup?

Observational test: is the age-spread in each clump <100 Myr?

Stabilization by Stream Clumps

$$1 \approx Q \approx \delta^{-1} \frac{\sigma}{V}$$

$$\delta \equiv \frac{M_{disk}}{M_{tot}}$$

lowdensity stream

dense

disk

shock

n ~ 0.1

n ~ 0.01

dense stream clumps $\gamma \dot{M}_{acc}$

stabilization Q>1 for

 $\delta_{\text{stable}} < 0.25 \ \gamma^{1/3} \ Q^{-1} (1+z)_3^{1/3}$

Stabilization by Stream Clumps

Bimodality of Stream-Fed Galaxies

 $M_{v}>10^{12}$ z>2

When and where did most stars form?

Open Issues

- Star formation in the giant clumps
- Clump survival
- Fate of the hi-z clumpy disks at z=0 thick stellar disks of spirals? Lenticulars?
- Why are z=0 disks not wildly unstable?
- low input rate of cold streams
- disk is dominated by stars
- dominant bulge (?)
- How did thin disks form at late z? by cold, spherical, slow accretion in $M_{\rm vir} < 10^{12}~M_{\odot}$

Conclusions

Stream-Fed Galaxies: High-z massive galaxies are driven by narrow cold streams penetrating shock-heated halos (> $10^{12}M_{\odot}$)

Bimodality: star-forming disks vs red-and-dead spheroids by stream clumpiness: on average 1/3 mergers >1:10 and 2/3 smooth

Unstable disks in steady state driven by streams ~ 3Gyr gaseous, extended, turbulent V/σ ~ 4, self-regulated by gravity, giant clumps $10^{8-9}M_{\odot}$ & transient features, bulge ~ disk

SFR in clumps ~ accretion rate ~ $100M_{\odot}\,yr^{-1}$. In sub-clumps Merger starbursts are only 1/4 of the SFGs at a given SFR

Bulge buildup from the disk by clump migration and angular momentum transport. Compact spheroids in extended disks

Morphological Quenching into red galaxies: disk stabilization by bulge growth and turbulence, driven by clumpy streams (mergers)

Cold streams as $L\alpha$ Blobs, also detectable as absorbers LLS, DLAS

Thank you

