A Simple Model for the Relationship Between Star Formation and Surface Density

Clare Dobbs

University of Exeter

Evaluating the Kennicutt/Schmidt law from simulations

- Galactic scale simulations cannot resolve star formation
 - require prescription for threshold density, efficiency, kinetic & thermal energy deposited
- How does star formation rate depend on the star formation implementation?
- Alternative approach
 - no implementation of star formation
 - calculate how much of the gas is gravitationally bound
 - but restricted to relatively low surface densities

Details of simulations

- Described in Dobbs (2008)
- Use SPH (3D)
- Gas disc subject to a galactic spiral potential
- Simulations isothermal, adopting a two-phase medium
- Include self gravity and magnetic fields

20 M⊙pc⁻¹

Details of simulations

Low density regime

 $\Sigma = 4, 8, 16, 20 \text{ M}_{\odot}\text{pc}^{-2}$

F = 4 %

 $\Sigma = 4 \text{ M}_{\odot}\text{pc}^{-2}$

F = 2, 4, 8 and 16 %

4 Mopc⁻² 250 Myr

Estimating the (local) star formation rate

- S.F.R. estimated at snapshot of simulation
- Determine location of bound gas increase radius of each bound 'clump' until $\alpha > 1$

Estimating the (local) star formation rate

- S.F.R. estimated at snapshot of simulation
- Determine location of bound gas increase radius of each bound 'clump' until $\alpha > 1$

Section of spiral arm showing bound gas (Σ =8 M \odot pc⁻²):

Comparison with observed Kennicutt-Schmidt law

- Estimate S.F.R. in 500 x 500 pc areas (each cross)
- Crosses points from 4 (green), 8 (dark blue) and 20 M⊙pc⁻² (cyan) calculations (i.e. 3 galaxies)
- Black points Kennicutt 1998
- Contours Bigiel et. al. 2008 (averaged over the galaxies in their sample)

Comparison with observed Kennicutt-Schmidt law

- Require €=0.05 to match observations
- No linear relation kink at 10 M⊙pc⁻² for both simulations and observations
- ullet Spread of points increases at lower Σ

- Observations indicate different star formation laws for different tracers
- Can we test this with simulations?

• Gas within 500x500 pc region exhibits range of densities

- + $\Sigma_{S.F.R.}$ vs Σ
- \triangle $\Sigma_{S.F.R.}$ vs $\Sigma > 10^{-23}$ gcm⁻³

- Gas within 500x500 pc region exhibits range of densities
- Only take gas with $\Sigma > 10^{-23}$ gcm⁻³
 - low density points shifted left
 - linear relation

• Gas within 500x500 pc region exhibits range of densities

- Take gas with $\Sigma < 10^{-23}$ gcm⁻³
 - high density points shifted left
 - steeper relation

- Gas within 500x500 pc region exhibits range of densities
- Only take gas with $\Sigma > 10^{-23}$ gcm⁻³
 - low density points shifted left
 - linear relation
- Take gas with $\Sigma < 10^{-23}$ gcm⁻³
 - high density points shifted left
 - steeper relation

Why is the dependence linear for dense gas (H_2) ?

- Free fall time not dependent on surface density
- S.F.R. just dependent on amount of gas (Σ)
- see also Krumholz & Thompson (2007)

• Assume fraction of H₂ varies according to surface

density:
$$f(H_2) = \left(\frac{\Sigma}{\Sigma_0}\right)^{\alpha} \quad \Sigma < \Sigma_0$$

 $f(H_2) = 1$ otherwise

• Assume fraction of H₂ varies according to surface

density:
$$f(H_2) = \left(\frac{\Sigma}{\Sigma_0}\right)^{\alpha} \quad \Sigma < \Sigma_0$$

 $f(H_2) = 1$ otherwise

• Assume observed star formation law for H_2 : $\Sigma_{SFR} \propto \Sigma(H_2)$

$$\Sigma_{SFR} = \Sigma_{SFR0}$$
 when $\Sigma = \Sigma_0$

• Assume fraction of H₂ varies according to surface

density:
$$f(H_2) = \left(\frac{\Sigma}{\Sigma_0}\right)^{\alpha} \quad \Sigma < \Sigma_0$$

 $f(H_2) = 1$ otherwise

• Assume observed star formation law for H_2 : $\Sigma_{SFR} \propto \Sigma(H_2)$

$$\Sigma_{\rm SFR} = \Sigma_{\rm SFR0}$$
 when $\Sigma = \Sigma_0$

• Densities $\Sigma < \Sigma_0$: $\Sigma_{SFR} \propto f(H_2) \Sigma = \Sigma^{\alpha+1}$

$$\Sigma > \Sigma_0$$
: $\Sigma_{SFR} \propto \Sigma$

Assume fraction of H₂ varies according to surface

density:
$$f(H_2) = \left(\frac{\Sigma}{\Sigma_0}\right)^{\alpha} \quad \Sigma < \Sigma_0$$

 $f(H_2) = I$ otherwise

• Assume observed star formation law for H_2 : $\Sigma_{SFR} \propto \Sigma(H_2)$

$$\Sigma_{\rm SFR} = \Sigma_{\rm SFR0}$$
 when $\Sigma = \Sigma_0$

• Densities $\Sigma < \Sigma_0$: $\Sigma_{SFR} \propto f(H_2) \Sigma = \Sigma^{\alpha+1}$

$$\Sigma > \Sigma_0$$
: $\Sigma_{SFR} \propto \Sigma$

• But for HI: $\Sigma(HI) = \Sigma - \Sigma(H_2)$ star formation rate multivalued!

e.g.
$$\Sigma(HI) = 0$$
 when $\Sigma_{SFR} = 0$ (i.e. $f(H_2)=0$), or $\Sigma_{SFR} > \Sigma_{SFR0}$ (i.e. $f(H_2)=1$)

Dependence for different tracers

$\Sigma_{SFR} \propto \Sigma(H_2)$

- Densities $\Sigma < \Sigma_0$: $\Sigma_{SFR} \propto f(H_2) \Sigma = \Sigma^{\alpha+1}$
- Densities $\Sigma > \Sigma_0$: $\Sigma_{SFR} \propto \Sigma$

Dependence for different tracers

 $\Sigma_{SFR} \propto \Sigma(H_2)$

- Densities $\Sigma < \Sigma_0$: $\Sigma_{SFR} \propto f(H_2) \Sigma = \Sigma^{\alpha+1}$
- Densities $\Sigma > \Sigma_0$: $\Sigma_{SFR} \propto \Sigma$

Example from Bigiel et. al. 2008

Dependence of (global) S.F.R. on shock strength

- Spiral shock triggering: produces higher star formation rate? (Elmegreen & Elmegreen 1986, Seigar & James 2002)
- Global star formation rate (over total area of disc)
- No dependence on shock strength in simulations

Dependence of (global) S.F.R. on shock strength

- Spiral shock triggering: produces higher star formation rate? (Elmegreen & Elmegreen 1986, Seigar & James 2002)
- Global star formation rate (over total area of disc)
- No dependence on shock strength in simulations

Why? α depends on σ - likely to increase in shock

The star formation rate and spiral shocks

- Velocity dispersion versus mass of clump for different shock strengths (far left)
- Systematic increase in σ with shock strength
- Higher σ in spiral arms with stronger shocks (left)

• But more bound gas lies in the spiral arms at higher shock strengths

Conclusions

- Local S.F.R. calculated from bound gas reproduces observations, providing $\epsilon \sim 0.05$
 - S.F.R linearly proportional to Σ_{bound}
- linear, since dynamical time-scales of bound clumps uncorrelated with $\boldsymbol{\Sigma}$
- S.F.R. not well correlated with Σ_{total}
 - and no I-I relation with Σ_{HI}
- Global S.F.R does not depend on spiral shock strength
 - stronger shocks also produce a higher σ