

Summary of Clumpy Galaxies

- New galaxy morphology at z>0.1: <u>clumpy</u>
 - chains (Cowie +95), clump clusters (EEH04), "clumpies"
 - chains are edge-on clump-clusters (EE05)
 - statistics of W/L, Distribution of positions in chains, clump & galaxy properties
 - clumpy types dominate at z>2 but even present at z=0.1-1, which suggests the structure is not just bandshifted star formation or mergers & interactions
- Likely precursor to modern spirals
 - combined co-moving density like spirals, $\sim 10^{-3} \, / \mathrm{Mpc^3} \, (\mathrm{E} + 07)$
 - visible optically to $z\sim5$ (E+07)
- Possible evolution to bulges & smooth disks
 - mass, age, surface density

Working Model

- Clump formation by <u>gravitational instabilities</u> in <u>rapidly assembled</u> gas disks
 - clumps are confined to within 100 pc of mean disk (EE06)
 - clumps are young star-forming regions (not diverse merged galaxies)
 - clump masses of 10^7 $10^8 M_\odot$, approaching $10^9 \, M_\odot$, could be M_{Jeans} if turbulent speeds & gas column densities are high
 - $M_{Jeans} \sim \sigma^4/G^2\Sigma \sim 10^8\,M_{\odot}$ if $\sigma \sim 30\text{--}50~km~s^{-1}$ and $\Sigma gas \sim 100~M_{\odot}~pc^{-2}$
 - dispersions consistent with observed HII dispersions (Forster-Schreiber+06; Weiner +06; Genzel +06,08; Puech +07)
 - column density typical for inner disks today
- Possible consequences of large clump masses:
 - massive clumps interact, migrate to the center to make a classical bulge and smooth the disk to make an exponential (Noguchi 99; Immeli +04).
 - Possible connection with nuclear black holes if clump cores form IMBH (EBE+08)
- Relevance to Kennicutt-Schmidt law:
 - check if SFR/Area , M_{clump} , σ , Σ_{gas} , and Q make sense
 - high σ is a possible explanation to the Wolfe & Chen 06 effect:
 - which is that the threshold column density is 10x higher than locally (from DLAs)
- Good analogy with local Dwarf Irregulars:
 - high σ/V , high H/R, high L_I/R , high gas fraction, "youthful"

Check if SFR/Area, M_{clump} , Σ_{gas} make sense

• SFR in clump clusters (at $z\sim 1$):

```
~in a clump: 0.3 \text{ M}_{\odot}/\text{kpc}^2/\text{yr}
~in whole galaxy: 3 \text{ M}_{\odot}/(25 \text{ kpc}^2)/\text{yr} \sim 0.12 \text{M}_{\odot}/\text{kpc}^2/\text{yr}
```

• SFR in MW:

- star complex: $5x10^5 M_{\odot}$ in R=300 pc in 50 Myr = 0.035 $M_{\odot}/kpc^2/yr$
- whole galaxy: $5M_{\odot}/\text{yr}/(300 \text{ kpc}^2)=0.017 M_{\odot}/\text{kpc}^2/\text{yr}$
- factor of ~10 higher SFR/Area for both clumps and whole galaxies
- If SFR/Area $\sim \Sigma^{1.5}$ (Kennicutt 98) then
 - clump Σ_{gas} higher than in MW by factor of $10^{2/3}=5$,
 - which means $\Sigma_{\rm gas} \, {\rm should \; be} \, 100 \; M_{\odot}/{\rm pc^2} \, {\rm if \; local} \, <\!\! \Sigma \!\! > \, \sim 20 \; M_{\odot}/{\rm pc^2}$
 - consistent with $M \sim M_{Jeans}$

Implications of the KS law

- A sensible explanation for KS law:
 - SFR/Area = effic. * Σ_{gas} * GI growth rate ~ 0.01 Σ_{gas} ($\pi G \Sigma_{gas} / \sigma$)
- If high redshift galaxies satisfy the local KS law then Σ^2_{gas}/σ must scale only with Σ^{15}_{gas} (there is no σ in the KS law)
 - which means σ must scale with $\Sigma^{0.5}_{gas}$
 - so clump mass $\sim \sigma^4/G^2\Sigma_{gas}$ scales with Σ_{gas} or σ^2
 - and Q ~ $\kappa\sigma/\pi G\Sigma_{gas}$ scales with κ/Σ^{05} $_{gas}$ or κ/σ
 - either more unstable or κ higher (inner disks of massive galaxies)
- Also, gas scale height $\sim \sigma^2/\pi G \Sigma_{total\ mass\ in\ gas\ layer}$
 - scales only with $\Sigma_{\rm gas}/\Sigma_{\rm total~in~gas~layer}$ and therefore decreases over time.

Simulations of Clumpy Galaxy Evolution

(ApJ 07, 08ab, 09ab with Frederic Bournaud & others)

- Particle-mesh, sticky particle gas (β =0.7)
 - grid resolution 110 pc (some runs 28 pc)
 - -10^6 particles each for halo, stars, gas (some runs 3x)
 - halo = Plummer sphere with scale length 15 kpc (some runs cuspy DM)
- Schmidt-law star formation
 - probability particle converts to a star is proportional to the local density to the <u>power 1.4</u>; feedback in some models
- Initial <u>disk profile flat</u>, bulgeless, 6 kpc radius, 7x10¹⁰ M_O total disk
- Initial $Q_{star} = 1.5$
- Example here: <u>50% disk gas fraction</u> initially, disk/halo inside disk=2

The <u>rotation curve</u> for the early phase is <u>irregular</u> because of the clump motions.

The <u>stellar velocity dispersion</u> is <u>high</u>.

Bournaud, Elmegreen & Elmegreen 07

Classical or "de Vaucouleurs" bulge, n~3-4

(EBE08)

With cuspy DM halo (gas+stars shown)

Control: rigid disk; others 50% gas, CC-[0,1,2]N: σ_{gas} =[9,5,15] km/s

High-resolution models: Nx3, softening length 2x less everywhere and 4x less at R<4 kpc (28 pc resol.). Without SN (top) and with SN feedback: $\epsilon = 0.0002$ (Mihos & Hernquist '94), 0.001, 0.01. (images inclined 30 deg)

If giant clumps contain dense clusters that form IMBH (e.g., Ebisuzaki +01; Portegies-Zwart +02,04,06; Freitag +06;...) then these IMBH can also spiral into the center and make a SMBH

BH mass – bulge σ relation

Because $M_{\rm BH}/M_{\rm clump}$ =10⁻³ was put in, this relation indicates that the bulge size is coming out correctly

Clump Clusters as Evidence for Cold Flows

(Murali +02; Semelin & Combes 05; Dekel, Birnboim +03-09, Keres 08; Ocvirk +08; Agertz +09)

- <u>Simultaneous</u> formation of several similar clumps implies rapid assembly of gas disk
 - otherwise SF will eat away at the gas slowly
- Clump <u>roundness</u> suggests that the gravitational instability is strong
 - in local disks, which are marginally stable, GIs produce spiral waves in the stars, or flocculent spirals in star formation when there are no stellar spirals
- Strong instability requires a <u>cool stellar disk</u> and this seems to <u>rule out</u> significant mergers, even minor mergers for <u>primary</u> gas accretion
 - (Bournaud & Elmegreen 2009)

 σ_{gas} =50 km s⁻¹, 3x10⁶ particles each for gas, stars, DM; 30 pc resolution, M_{gas} = M_{stars} =6x10¹⁰ M_{O} , M_{halo} =0.5(M_{stars} + M_{gas}) stellar mass fraction in disk:bulge:halo indicated

Bournaud & Elmegreen 09

Giant clump formation requires >80% of the stars (and all of the gas) in a disk. Makes even minor mergers (10:1) unlikely during galaxy build-up. Requires smooth gas accretion.

The Trouble with Mergers... too much Stellar Spheroid

- Disks built by galaxy mergers are embedded in stellar spheroids
 - Springel & Hernquist <u>05</u>: 25% of its stars the final disk, 50% in bulge & 25% in halo
 - Robertson et al. $\underline{06}$: f_{gas} =0.4-0.6, 1:1 mergers end up with <10% of stars in the disk
 - Robertson et al. $\underline{06}$: $f_{gas} = 0.8$, 1:1 mergers end up with 40%-45% of the stars in the disk
 - Robertson et al. <u>06</u>: f_{gas}=0.4-0.8, 8:1 merger, final stellar disk fraction=60%-75%
 - Hopkins et al. <u>08</u>: 8:1 merger gets final stellar disk fraction = 70%-85%; 2:1 merger, disk < 50% of stars; 1:1 merger, disk < 30% of stars
- If a galaxy doubles its mass by mergers:
 - for 1:1 major merger or six successive 8:1 minor mergers, and for f_{gas} =50% in the progenitors (likely for $z \sim 2$; Daddi et al. 2008), such mergers will leave only 20% or less of the stellar mass in the rotating disk, the vast majority being in the bulge and halo.
- If the last mass doubling was half by mergers and half by smooth accretion:
 - for one 2:1 merger or 3-4 8:1 mergers, 40%-50% of the stellar mass will be in the disk

Morphologically, clump clusters are well matched to dwarf Irregulars

(except for mass: CC's \sim 30 x more massive than dwarf Irrs)

Dwarf Irrs as Analogs of Clump Clusters

- CC's resemble local dwarf irregulars because:
 - both have <u>high gas fractions</u> (e.g., Linda Tacconi, ...)
 - both have <u>high velocity dispersions</u> relative to the rotation speed
 - neither have spiral density waves
- In general, $L_{Jeans}/Galaxy$ Size $\sim H_{disk}/Galaxy$ Size $\sim (\sigma/V)^2$
- So, high σ/V means
 - large complexes relative to the galaxy size
 - only a few complexes in the whole galaxy
 - relatively thick disks
 - difficulty organizing stars into a coherent spiral wave
- In addition, the high gas fraction may <u>cause</u> the high σ/V because of stirring by self-gravity
- Finally, both types are relatively <u>young!</u>
 - another example of "down sizing"
 - "young" galaxies (in terms of rotation times) are gas-rich and clumpy

The Wolfe & Chen '06 Result

- DLA gas does not obviously form stars even though $\Sigma_{\rm gas}$ >local $\Sigma_{\rm crit}$ (5-10 M_O pc⁻²) (see also Wolfe, Rafelski, here).
- Wolfe & Chen 06 suggested Σ_{crit} is 10x higher at z~2 than locally
- Can the high Σ_{crit} result from low metallicities and low H_2 fractions (W&C06)?
 - Maybe not: local dwarfs have low metals and low H_2 fractions too, but they have low Σ_{crit} (Hunter + 98)
- Can the high $\Sigma_{\rm crit}$ result from high κ (W&C06)? i.e., DLAs are inner disks which are thought to require high $\Sigma_{\rm crit}$ even in local galaxies
 - Possibly, and clump clusters are a little smaller than local galaxies (x2 maybe),
 but inner disks have star formation in other z~2 galaxies
- New explanation: high Σ_{crit} comes from high σ (Elmegreen +09)

- Recall, $\Sigma_{\rm crit} = \sigma \kappa / \pi G$
- Use $(\sigma/V)^2 \sim L_{Jeans}/R$ (valid if disk dominates dark matter in inner region)
- Then $\Sigma_{\text{crit}} \sim (L_{\text{Jeans}}/R)^{1/2} (V^2/R) / 2.2G$
- For given V, clumpy structure (large $L_{Jeans}/R)$ implies Σ_{crit} should be high (the Wolfe & Chen result)
 - a spiral galaxy of the same size has lower $\Sigma_{\rm crit}$ because $L_{\rm Jeans}/R$ is lower
- Perhaps DLAs are $\Sigma < \Sigma_{\rm crit}$ whole disks or $\Sigma < \Sigma_{\rm crit}$ parts of clumpy disks with modest SF rates

Summary

- Clumpy galaxy morphology at high z seems to result from GIs in turbulent, gas-rich disks
- For instabilities $L_{Jeans} \sim \sigma^2/G\Sigma$, $M_{Jeans} \sim \sigma^4/G^2\Sigma$
 - Scale-up implies:
 - $\sigma \sim 5 \times local \sigma \sim 40 \text{ km/s}$
 - Forster Schreiber + 06; Genzel + 06, 08; Weiner et al. 2006, Puech et al. 2007, ...
 - $\Sigma \sim 10 \text{ x local } \Sigma \sim 100 \text{ M}_{\odot}/\text{pc}^2 \text{ in gas } (1 \text{x} 10^{22} \text{ H cm}^{-2})$
- Clumpy galaxies appear to be <u>forming the inner disks (thick disks?)</u>
 and <u>bulges</u> of today's spirals
- Process of star formation is the <u>same as locally</u>, but at higher σ and Σ
 - and higher gas fraction: <u>clumps form instead of swing-amplified spirals</u>
- Significant merging unlikely: puts too much stellar mass in a bulge or spheroid and then the instabilities look like spirals and not clumps
- Wolfe & Chen KS law anomaly could result from high σ