Testing Star Formation Prescriptions in the Milky Way

and Elsewhere...

Neal J. Evans II

Star Formation Prescriptions

- Schmidt (1959)
 - SFR $\sim \rho^n$, n = 1 or 2
- Kennicutt (1998)
 - $\Sigma_{SFR}(M_{sun} yr^{-1} kpc^{-2}) = 2.5x10^{-4} \Sigma^{1.4}_{gas}(M_{sun} pc^{-2})$
 - $\Sigma_{\rm SFR}(M_{\rm sun}~{\rm yr}^{-1}~{\rm kpc}^{-2}) = 6.3 \times 10^{-3} ~\Sigma^{1.4}_{\rm gas}(10~M_{\rm sun}~{\rm pc}^{-2})$
- Bigiel et al. (2008)
- Krumholz et al. (2009)
 - $\Sigma_{SFR} = f(\Sigma_{gas}, f(H_2), Z, clumping)$
 - Nearly linear with Σ_{mol} below ~ 100 M_{sun} pc⁻²
 - Steepens above 100 M_{sun} pc⁻²

New Results on M51

 $S_{SFR} = A S_{gas}^{N}$

x 10 M(0, e), M a Gaussian e is intrinsic scatter in log (0.43)

Blanc et al. Poster

Testing Locally

- Observing Clouds in the Milky Way
 - Advantage is good resolution
 - Ability to count stars in some cases
 - Disadvantage is good resolution
 - Hard to compare on scales ~ galaxies
 - Progress from large surveys with Spitzer, Herschel, mm telescopes

Star Formation in Nearby, "Large" (3-10 pc) Clouds

- c2d Survey
 - Survey 5 large clouds with Spitzer
 - Survey 3 of them with Bolocam, and COMPLETE
- Where do stars form in large molecular clouds?
- How efficient is star formation?
- Local star formation prescriptions

Where do Stars Form?

Gray is extinction, red dots are YSOs, contours of volume density (blue is 1.0 M_{sun} pc⁻³; yellow is 25 M_{sun} pc⁻³)

YSOs, Dense Cores are Clustered

- Only 9% of YSOs outside contour of 1 M_{sun} pc⁻³
- Distributed YSOs are more evolved
- Distributed population could come from dispersed clusters [t_{cross} ~ t(ClassII) ~ 2 Myr]
- Densities of YSOs are high in clusters
 - **But < 0.1** that in Orion, ...
- Dense cores are even more clustered than YSOs

How "Efficient" is Star Formation?

- Not very for the cloud as a whole
 - 1% to 4% of mass with $A_V > 2$ is in dense cores
 - (Enoch et al. 2007)
 - 2% to 4% is in stars (assume $\langle M_* \rangle = 0.5 M_{sun}$)
 - Cloud depletion time at current rate 40-100 Myr
 - Longer than cloud lifetimes
- Quite efficient in dense gas
 - Current TOTAL M_{*} similar to M_{dense}
 - Core depletion time is 0.6 to 2.9 Myr

Testing Prescriptions

- Prescriptions were developed from largescale observations
 - Would they work for an individual cloud?
 - Accurate Σ_{SFR} from counting YSOs, timescale of 2 Myr for Class II
 - Σ_{gas} from extinction maps
 - Much more accurate than masses from CO
 - lacksquare Applies to the same region as $\Sigma_{
 m SFR}$

The Predictions

The Test, Part I

What are the Implications?

- No prescriptions work on the scale of these molecular clouds
 - Even the "inactive" clouds lie far above the relation.
 - Not enough to define a relation, but...
 - 14 more local clouds surveyed
 - Gould Belt Legacy Project with Spitzer
 - Bigger range of star formation rates

Test on Smaller Scales?

Star formation mostly in high extinction Cloud average biased toward lower $S_{\rm gas}$

- Count YSOs in contours of A_V
- YSOs can wander out of formation region
- Count only Class I, Flat
 - Use suitable lifetimes (~0.5 Myr each)
- Checking for fakes at low A_V
 - Poster by Amanda Heiderman

The Test, Part II

Lessons from Nearby Clouds

- $\Sigma_{\rm SFR}$ >10 times prediction of relations for galaxies
- These regions are forming only low mass stars
 - Would not even be seen in most exgal SFR tracers
- On scales where SF actually happens...
 - Dependence on S_{mol} may be very strong
- SFR determined on sub-pc scales << exgal resolution

What About Massive Stars?

- Goal is to do studies similar to those in nearby clouds
- More distant clouds, usually can't count stars
- Use water masers as signposts
 - Plume, Mueller, Shirley, Wu
 - Latest study by Wu et al. (2009)
 - 50 massive, dense clumps
 - **CS 2-1, 5-4, 7-6; HCN 1-0, 3-2 maps**

Massive Dense Clumps: Gross Properties

- Massive, Dense, Turbulent, Inflow
 - CS 2-1 or HCN 1-0 trace lower densities, higher masses
 - <M> = 5000 M_{sun}; Median 2000 M_{sun}
 - Mass distribution closer to clusters than to GMCs
 - Much more turbulent than low mass cores
 - Linewidths about 16 times wider
 - Well above "Larson law" for size-linewidth
 - Evidence of inward motions in at least some

Internal Properties

- Clumps have internal gradients in n, T
 - $n \sim r^{-p}$, $p \sim 1.8$ on average
- Lines with higher n_{crit}, DE trace inner parts
- Surface density increases with n_{crit}, DE
 - Mean $S = 0.29, 0.33, 0.78, 1.1 \text{ gm cm}^{-2}$
 - From CS2-1, HCN1-0, HCN3-2, CS7-6
- Linewidth INCREASES with n_{crit}, DE
 - Inverse Larson Law

Inverse Size Linewidth Relation

Does SFR Depend on Volume Density?

- Free-fall time depends on volume density
 - $t_{\rm ff} \sim r^{-0.5}$
- Common theoretical approach
 - Krumholz and Thompson
 - Narayanan et al.
 - SFR \sim Mass/ $t_{\rm ff}$
 - $-dr_*/dt \sim r/r^{-0.5} \sim r^{1.5}$
 - Local version of Kennicutt relation

Does SFR $\sim < n > 1.5$?

Mean density from virial mass and radius <n> ~ M/r³

Does SFR $\sim n^{1.5}$?

Density from LVG models of multi-transition CS (Plume et al.)

Testing Prescriptions with Massive, Dense Clumps

- These are the places where massive stars form
- What exgal studies would see
- Use M_{vir} and size to $\overline{get S_{gas}}$
- Use L_{IR} to get SFR
 - Usual prescription from exgal
 - May underestimate SFR
 - Divide by size to get S_{SFR}

The Test, Part III

RMS scatter in HCN is 0.4 in the log

Massive Star Formation in Galactic Context

- Surveys in mm continuum finding 1000's of dense clumps
 - Bolocam Galactic Plane Survey (>8000 sources)
 - http://irsa.ipac.caltech.edu/data/BOLOCAM_GPS/
 - ATLASGAL survey from APEX
 - Future SCUBA2 survey
 - Herschel Galactic Plane Survey (HIGAL)
- Infrared Dark Clouds (IRDC)
 - MSX, GLIMPSE, MIPSGAL
- New models of Galaxy, VLBA distances, ...
- Provide link to extragalactic star formation

Galactic-galactic connection?

- Galactic massive clumps have some similarities to starburst galaxies
- We can study them in some detail
- Linear relation between L_{IR} and L(CS) and L(HCN)

L_{IR} Correlates Linearly with L_{HCN} in Starburst Galaxies

Amount of **dense** molecular gas

- L_{IR} correlates better with L(HCN)
- Smaller scatter
- Linear
- SFR rate linearly proportional to amount of dense gas
- "Efficiency" for dense gas stays the same

Gao & Solomon (2004) ApJ 606, 271

The Galactic-galactic Connection

L(IR)

L(HCNJ = 1-0)

Wu et al. (2005)

The Test, Part IV

The Basic Unit Model

The linear correlation and the Luminosity cutoff can be explained if there exists a basic unit for clustered star formation.

 $M > M_{crit}$

Each unit provides the same luminosity

Critical mass of dense gas

Luminosity depends strongly on mass

M < M_{crit} available

Wu et al. 2005

Test Basic Unit Model

- Detections of 8 high-z galaxies at 350 mm
 - SFR from 11 to 2500 M_{sun} yr⁻¹
- Model as collections of basic units of SF
 - Use mean L_{dust} of massive, dense clumps from Wu et al. (2009) (5 x 10⁵ L_{sun})
 - Need 0.6 to 30 x 10⁶ units
 - SEDs can be modeled with differing masses of the units

Model of one clump

Get L_{dust}/M_{gas} for All

- Big range in values
- L_{dust}/M_{gas} ranges from 2.1 to 283
- Usual fit to single T_d not realistic, but...
- T_d correlates very well with L/M ~ "SFE"
 - Can use " T_d " to measure "SFE" and t_{dep}

"T_d" Really Measures L/M

 $L/M = 3.5 \times 10^{-6} T_d^{4.7}$ $t_{dep} = 5.6 \times 10^9 (L/M)^{-1}$

Summary

- Star formation is mostly clustered
- Efficiency is low in clouds, high in cores
- But much more SF than predicted by any prescriptions
- Massive clumps denser, much more turbulent
- No evidence that SFR $\sim r^{1.5}$ on local scales
- Basic unit of massive SF consistent with many observations
- SFR ~ Mass of gas above a threshold density
- With a LOT of scatter

Backup Slides

L(HCN) Measures M_{vir}(dense)

Essentially linear relationships

L_{IR} Measures SFR (given time...)

The evolution of light to star formation rate with various models (Krumholz & Tan 2006). $L_{\rm IR}$ measures SFR well if enough time to form full sample of IMF. There will be variations. $L_{\rm IR}$ may underestimate SFR at early times, cf. higher L/M if there is an HII region.

Massive, Clustered Star Formation is Also "Slow"

Hard to assess t_{dep} directly. Indirect arguments support similar small values of t_{ff}/t_{dep} .

These support an equilibrium cluster star formation mode, which is suggested by the turbulence-regulated massive star formation model (Krumholz and Tan 2006).

Star formation fraction per free-fall time Vs. effective density of the tracer (Krumholz & Tan 2006)

SFR/Mass(CO) Increases with SFR

Star formation Rate

- SFR/Mass of molecular gas increases with SFR
- Factor of ~ 100
- "Efficiency" increasing
- But what does this really mean?

Bolocam Galactic Plane Survey

The Bolocam Galactic Plane Survey (BGPS)

4 Months over two years on CSO At 1.1 mm Covered 153 sq. deg. <rms> = 30 mJy At T_d = 20 K, M_{rms} = 0.4 D_{kpc}^2 M_{sun}

Background is IRAS 100 microns; Dashed lines are GLIMPSE Complementary survey in South (ATLASGAL with APEX) JCMT Galactic Plane Survey (JPS) will go much deeper in a few years

The Center of MW

Red: 1mm Cyan: 8 micron Purple: 20 GHz

BGPS Spitzer VLA

Turbulence is High

Correlation is weak.

Linewidths are 4-5 times larger than in samples of lower mass cores.

Massive clusters form in regions of high turbulence, pressure.

Some Evidence of Inflow

A significant fraction of the massive core sample show self-reversed, blue-skewed line profiles in lines of HCN 3-2.
Of 18 double-peaked profiles, 11 are blue, 3 are red.

Suggests inflow motions of overall core.

 $V_{in} \sim 1$ to 4 km/s over radii of 0.3 to 1.5 pc.

Also, Fuller et al. (2005) found 22/77 sources with blue profiles using HCO⁺ 1-0 and H_2 CO lines. $V_{in} \sim 0.1$ to 1 km/s $dM_*/dt \sim 10^{-4}$ to 10^{-3} M_{sun}/yr

J. Wu et al. (2003)

Mass Function of Dense Clumps

Cumulative Mass Function Determined from M_{vir} . Incomplete below 1000 M_{sun}

Steeper than Cloud or CO clump mass functions.

Best fits: -0.91 to -0.95

Salpeter is -1.35 on this plot, but relevant comparison is to **total** masses of OB Associations Massey et al. (1995) found -1.1+/-0.1 for 13 OBAs. McKee and Williams (1997) predict -1.