

Work in progress ...

- 1) Local Supercluster ($H\alpha^3$)
- 2) Coma Supercluster (SDSS)
 - G. Gavazzi (Milano Bicocca)
 - A. Boselli (Marseille)
 - S. Fabello (MPA)
 - M. Fumagalli (UCSC)
 - V. Galardo (Milano Bicocca)
 - F. Grossetti (Milano Bicocca)
 - & ALFALFA team

SFR@50 Spineto July 8-09

(Gavazzi et al. in prep.)

Hα³ 424 observed 48 dark or too faint 22 not observed 8 near star or z 24 not observed S<0.7Jy

A222260

-2

Color-mag HI selected

Work in progress ...

 $H\alpha$ EW freq.

 $H\alpha$ EW vs. Stellar mass

HI Mass vs. Stellar Mass

Depletion time $(\tau=MHI/SFR)$

vs. stellar mass

defHI>0.5

defHI<0.5

For the relation HI/H2 see: Fumagalli&Gavazzi 08 Fumagalli+09

 $\text{H}\alpha^3$

More to come

Gavazzi et al. (in prep)

Color Magnitude (type)

Luminosity Functions

Early type

Color Magnitude

Groups

Color Magnitude

Clusters

Color Magnitude

Isolated

Conclusions

Environmental transformations occurring at present epoch in dense environments consist of effective removal of the HI gas from the outer parts of galaxies.

- 1)Their star formation is quenched due to exhaustion of fuel
- 2) dwarf (blue) galaxies that are currently falling onto clusters have SF quenched (Δg -I=+0.5) leading to their transformation from:

Unlike mechanisms occurring at past epochs (1<z<2) that were effective at shaping the galaxy sequence at high luminosity (cold streams...merging ...downsizing), irrespective of the environment

6000 λ(Å) 4000

6000 λ(Å)

0 L 4000

6000 λ(Å) 4000