## Physical Origins of the Star Formation Law

Mark Krumholz
UC Santa Cruz
SFR@50
July 6, 2009

#### **Collaborators:**

Sara Ellison (U. Victoria) X
Michele Fumagalli (UC Santa Cruz)
Chris Matzner (U. Toronto)
Chris McKee (UC Berkeley)

Xavier Prochaska (UC Santa Cruz)

Jonathan Tan (U. Florida)

Jason Tumlinson (STScI)

### The SFR in a Nutshell

- Stars form only in molecular gas.
- In molecular gas, a (nearly) constant fraction  $\epsilon_{\rm ff}$  of the gas forms stars per  $t_{\rm ff}$

### Computing the SFR therefore requires:

- 1. Computing the H<sub>2</sub> mass fraction
- 2. Computing  $t_{\rm ff}$  in the molecular gas
- 3. Computing  $\varepsilon_{\rm ff}$

That's it.

## Step 1: Computing the Molecular Fraction

- Molecules reside in giant molecular clouds (GMCs) that are the inner parts of atomic-molecular complexes
- The outer parts are dissociated by interstellar Lyman-Werner photons
- Goal: compute HI and H<sub>2</sub> mass fractions



# Dissociation Balance in Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson 2008a; McKee & Krumholz 2009)

The basic equations for this system are *chemical* equilibrium and *radiative transfer*.

$$n_{\rm HI}n\mathcal{R} = n_{\rm H_2} \int d\Omega \int d\nu \, \sigma_{\rm H_2} f_{\rm diss} I_{\nu}/(h\nu)$$

$$\hat{e} \cdot \nabla I_{\nu} = -(n_{\rm H_2} \sigma_{\rm H_2} + n\sigma_{\rm d}) I_{\nu}$$

# Dissociation Balance in Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson 2008a; McKee & Krumholz 2009)

The basic equations for this system are *chemical equilibrium* and *radiative transfer*.

$$n_{\rm HI} n \mathcal{R} = n_{\rm H_2} \int d\Omega \int d\nu \, \sigma_{\rm H_2} f_{\rm diss} I_{\nu} / (h\nu)$$
  
 $\hat{e} \cdot \nabla I_{\nu} = -(n_{\rm H_2} \sigma_{\rm H_2} + n \sigma_{\rm d}) I_{\nu}$ 

Idealized problem: spherical cloud of radius R, density n, dust opacity  $\sigma_d$ ,  $H_2$  formation rate coefficient R, immersed in radiation field with LW photon number density  $E_0^*$ , find fraction of mass in HI and  $H_2$ .

# Dissociation Balance in Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson 2008a; McKee & Krumholz 2009)

The basic equations for this system are chemical Formation on grains = Photodissociation equilibrium and radiative transfer.

$$n_{
m HI} n \mathcal{R} = n_{
m H_2} \int d\Omega \int d\nu \, \sigma_{
m H_2} f_{
m diss} I_{
u}/(h
u)$$

$$\hat{e} \cdot \nabla I_{\nu} = -(n_{\rm H_2}\sigma_{\rm H_2} + n\sigma_{\rm d})I_{\nu}$$

Idealized problem: spherical cloud of radius R, decrease in radiation intensity and density n, dust opacity  $\sigma_d$ ,  $H_2$  formation rate coefficient by intensity  $E_0$ , the radiation of mass in  $E_0$ , find fraction of mass in  $E_0$ .

### Calculating Molecular Fractions

To good approximation, solution only depends on two numbers:

$$au_{
m R} = n\sigma_{
m d}R$$
 $\chi = rac{f_{
m diss}\sigma_{
m d}E_0^*}{n\mathcal{R}}$ 

A semi-analytic solution can be given from these parameters.

 $\tau_R$  depends only on galaxy  $\Sigma$ ,  $Z \Rightarrow$  can be measured directly



Analytic solution for location of HI / H<sub>2</sub> transition vs. exact numerical result

### Shielding Layers in Galaxies

(Krumholz, McKee, & Tumlinson 2009)

What is  $\chi \propto (\sigma_d / \mathcal{R}) (E_0^* / n)$ ?

- Dust opacity σ<sub>d</sub> and H<sub>2</sub> formation rate R both ∝
   Z, so σ<sub>d</sub> / R ~ const
- CNM dominates shielding, so n is the CNM density



FGH curves for MW (Wolfire et al. 2003)

- CNM density set by pressure balance with WNM, and  $n_{\text{CNM}} \propto E_0^*$ , with weak Z dependence.
- $\Rightarrow \chi \propto (\sigma_d / \mathcal{R}) (E_0^* / n) \sim 1 \text{ in all galaxies!}$
- $\Rightarrow$   $f_{H2}(\Sigma, Z)$  given by an analytic fitting formula!

### Successful Model Predictions

- H<sub>2</sub> fractions seen by THINGS (Krumholz, McKee, & Tumlinson 2009)
- Maximum HI columns of DLAs (Krumholz et al. 2009)
- When ram-pressure stripping causes galaxies to lose H<sub>2</sub> (Fumagalli et al. 2009; poster here)





## Step 2: t<sub>ff</sub> in GMCs

• GMCs in nearby galaxies all have  $\Sigma_{\rm GMC} \sim 100~{\rm M}_{\odot}~{\rm pc}^{-2}$  ( $N_{\rm H} \sim 10^{22}$ ) (Bolatto et al. 2008)



Luminosity (∞mass) vs. radius for galactic and extragalactic GMCs (Bolatto et al. 2008)

## Step 2: t<sub>ff</sub> in GMCs

- GMCs in nearby galaxies all have  $\Sigma_{\rm GMC} \sim 100~{\rm M}_{\odot}~{\rm pc}^{-2}$  ( $N_{\rm H} \sim 10^{22}$ ) (Bolatto et al. 2008)
- HII region feedback naturally keeps GMCs at this surface density (Krumholz, Matzner, & McKee 2006)

Evolution of GMC virial ratio, column density, and depletion time in semi-analytic models



### Including the Starburst Regime

(Krumholz, McKee, & Tumlinson 2009)

• Invariance of  $\Sigma_{\rm GMC}$  breaks down when

$$\Sigma_{\rm gal} > \Sigma_{\rm GMC} \Rightarrow \Sigma_{\rm GMC} = \max(85 \, M_{\odot} \, \, {\rm pc}^{-2}, \Sigma_{\rm gal})$$

- Most GMC mass is in objects with mass
  - ~ galactic Jeans mass ⇒

$$M_{\rm GMC} = 3.7 \times 10^7 \, M_{\odot} \left( \frac{\Sigma_{\rm GMC}}{85 \, M_{\odot} \, \, {\rm pc}^{-2}} \right)$$

• Combining:

$$t_{\rm ff} = 20 \,\,{
m Myr} \left[ \left( rac{\Sigma_{
m gal}}{85 \, M_{\odot} \,\,{
m pc}^{-2}} 
ight)^{1/4}, \left( rac{\Sigma_{
m gal}}{85 \, M_{\odot} \,\,{
m pc}^{-2}} 
ight)^{-1/2} \right]$$

### Step 3: Compute $\varepsilon_{ff}$





Depletion time as a function of  $\Sigma_{H2}$  for 2 local galaxies (left, Wong & Blitz 2002) and as a function of  $L_{HCN}$  for a sample of local and  $z \sim 2$  galaxies (right, Gao & Solomon 2004, Gao et al. 2007)

### There is a Universal SFR



Clouds convert  $\varepsilon_{\rm ff}$  ~1% of their mass to stars per  $t_{\rm ff}$ , regardless of density or environment (Tan, Krumholz, & McKee 2006; Krumholz & Tan 2007)

### Where Does $\varepsilon_{\rm ff}$ Come From?

(Krumholz & McKee 2005)

- On large scales, GMCs have α ≈ 1 (i.e. PE ≈ KE)
- Linewidth-size relation:  $\sigma_v \approx c_s (\ell / \lambda_s)^{1/2}$
- - $\Rightarrow$  KE  $\propto \ell^4$ , PE  $\propto \ell^5$
  - ⇒ KE >> PE
- Hypothesis: SF only occurs in regions where PE ≥ KE and P<sub>th</sub> ≥ P<sub>ram</sub>
- Only overdense regions meet these conditions
- Required overdensity is given by  $\lambda_J \leq \lambda_s$ , where  $\lambda_J = c_s [\pi/(G\rho)]^{1/2}$



### Calculating the SFR



- Density PDF in turbulent clouds is lognormal; width set by M
- Integrate over region
   where λ<sub>J</sub> ≤ λ<sub>s</sub>, to get
   mass in "cores", then
   divide by t<sub>ff</sub> to get SFR
- Result:

 $\varepsilon_{\rm ff} \approx 0.015 \ \alpha^{-0.68} \ (\mathcal{M} \ / \ 30)^{-0.32}$ 

 $\varepsilon_{\rm ff}$  ~ 1% for any turbulent, virialized object

(Krumholz, McKee, & Tumlinson 2009)

$$\dot{\Sigma}_{*} = f_{\rm H_{2}}(\Sigma_{\rm gal}, Z) \frac{\Sigma_{\rm gal}}{2.6 \text{ Gyr}} \times \\ \begin{cases} \left(\frac{\Sigma_{\rm gal}}{85 \, M_{\odot} \, {\rm pc^{-2}}}\right)^{-0.33}, & \Sigma_{\rm gal} < 85 \, M_{\odot} \, {\rm pc^{-2}} \\ \left(\frac{\Sigma_{\rm gal}}{85 \, M_{\odot} \, {\rm pc^{-2}}}\right)^{0.33}, & \Sigma_{\rm gal} > 85 \, M_{\odot} \, {\rm pc^{-2}} \end{cases}$$

(Krumholz, McKee, & Tumlinson 2009)



#### Lines:

theory

#### Contours:

THINGS, Bigiel et al. 2008

#### Symbols:

(Krumholz, McKee, & Tumlinson 2009)



#### Lines:

theory

#### Contours:

THINGS, Bigiel et al. 2008

#### Symbols:

(Krumholz, McKee, & Tumlinson 2009)



Lines:

theory

Contours: THINGS,

Bigiel et al. 2008

Symbols:

(Krumholz, McKee, & Tumlinson 2009)



#### Lines:

theory

#### Contours:

THINGS, Bigiel et al. 2008

#### Symbols:

(Krumholz, McKee, & Tumlinson 2009)



#### Lines:

theory

#### Contours:

THINGS, Bigiel et al. 2008

#### Symbols:

# Atomic and Molecular Star Formation Laws



Contours: THINGS (Bigiel et al. 2008)
Lines: Theory for metallicities from 0.1 x solar to 3 x solar
(Krumholz, McKee, & Tumlinson 2009)

### Summary

### The SFR depends on:

- 1. The molecular fraction  $f_{\rm H2}$  determined by radiation and chemistry, depends on galaxy  $\Sigma$ , Z
- 2. The free-fall time in molecular clouds  $t_{\rm ff}$  determined by SF feedback in low  $\Sigma$  galaxies, by galaxy  $\Sigma$  in high  $\Sigma$  galaxies
- 3. The star formation rate per free-fall time  $\epsilon_{\rm ff}$  this is always ~1% due to the physics of turbulence