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The SFR in a Nutshell

« Stars form only in molecular gas.

* In molecular gas, a (nearly) constant
fraction ¢4 of the gas forms stars per £

Computing the SFR therefore requires:
1. Computing the H, mass fraction

2. Computing £ in the molecular gas
3. Computing &

That's It.




Step 1. Computing the
Molecular Fraction

* Molecules reside in giant
molecular clouds (GMCs)
that are the inner parts of

atomic-molecular
complexes

The outer parts are
dissociated by interstellar
Lyman-Werner photons

Goal: compute HI and H,
mass fractions




Dissociation Balance In
Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson 2008a; McKee & Krumholz 2009)

The basic equations for this system are chemical
equilibrium and radiative transfer.

nginR = nHz/dQ/duaHQfdissL,/(hz/)

e-VI, = —(nH20H2+n0d)IV




Dissociation Balance In
Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson 2008a; McKee & Krumholz 2009)

The basic equations for this system are chemical
equilibrium and radiative transfer.

nginR = nHz/dQ/duaHQfdissL,/(hz/)

e-VI, = —(nHonZ—I—nad)IV

|dealized problem: spherical cloud of radius R,
density n, dust opacity ¢, H, formation rate

coefficient ‘R, immersed in radiation field with LW

photon number density E,, find fraction of mass in
HI and H,.




Dissociation Balance In
Atomic-Molecular Complexes

(Krumholz, McKee, & Tumlinson 2008a; McKee & Krumholz 2009)
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Calculating Molecular Fractions

To good approximation,
solution only depends on

two numbers:

TR — ’n,O'dR 3 2.0 0.6 = 0,/107%" cm™
. log Z = =2
mlogZ = -15

f&msadlﬂ§

. " nR "
A semi-analytic solution

can be given from these
parameters.

TR depends only on
galaxy >, /Z = can be Analytic solution for location of HI / H,

: transition vs. exact numerical result
measured directly
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Shielding Layers in Galaxies

(Krumholz, McKee, & Tumlinson 2009)
What is x « (o4/R) (E,"l n)?
* Dust opacity o4 and H,
formation rate R both
Z, so o4/ R ~ const

e CNM dominates
shielding, so n is the

CNM density FGH curves for MW (Wolfire et al. 2003)

 CNM density set by pressure balance with WNM,
and nqyy < E,, with weak Z dependence.

= x x (04/R) (Ey/ n) ~1in all galaxies!

= f,(2, Z) given by an analytic fitting formula!




Successful Model Predictions
» H, fractions seen by THINGS

(Krumholz, McKee, & Tumlinson 2009) 200 205 A28 l2o 225

. -1.25 < log Z' < -0.5
e Maximum HI columns of DLASs
(Krumholz et al. 2009)

 When ram-pressure stripping

causes galaxies to lose H,
(Fumagalli et al. 2009; poster here)
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Step 2: t; in GMCs

 GMCs in nearby
galaxies all have
ZGMC ~ 100 M@ pC_2

(NH ~ 1022) (Bolatto et al.
2008)
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Luminosity («mass) vs. radius for galactic
and extragalactic GMCs (Bolatto et al.
2008)




Step 2: t; in GMCs

 GMCs In nearby
galaxies all have
ZGMC ~ 100 M@ pC_2

(NH ~ 1022) (Bolatto et al.
2008)

HIl region feedback
naturally keeps
GMCs at this

surface density

(Krumholz, Matzner, & McKee
20006)

Evolution of GMC virial ratio,
column density, and depletion 0 10 20 30 40 50 60

time in semi-analytic models t (Myr)




Including the Starburst Regime

(Krumholz, McKee, & Tumlinson 2009)

* |Invariance of Z5,,c breaks down when
Zgal > ZGMC — EGMC — max(85 M@ pC_z, Egal)

* Most GMC mass is in objects with mass
~ galactic Jeans mass =

MGMC = alars 107 M@ (

» Combining:

2GMC )

89 M@ pC_2

tqg = 20 Myr

(

Zgal

85 Mo pc—2

)"

Zgal
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Step 3: Compute &
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Depletion time as a function of Z,, for 2 local galaxies (left, Wong & Blitz
2002) and as a function of L, for a sample of local and z ~ 2 galaxies
(right, Gao & Solomon 2004, Gao et al. 2007)




There is a Universal SFR

Clouds convert g4 ~1% of their mass to stars per

t:, regardless of density or environment (tan,
Krumholz, & McKee 2006; Krumholz & Tan 2007)




Where Does ¢4 Come From?

(Krumholz & McKee 2005)
On large scales, GMCs have a = 1 (i.e. PE = KE)
Linewidth-size relation: o, = c, (¢/ \)"?
In average region, M o £
= KE « 4, PE «
= KE >> PE

Hypothesis: SF only
occurs Iin regions where
PE=zKEand P, 2P,

Only overdense regions
meet these conditions

Required overdensity is
given by A, <A, where A, =c. [/ (Gp) ]2




Calculating the SFR

032 10 31 100

* Density PDF in turbulent

clouds is lognormail;
width set by v

Integrate over region
where A, < A, to get
. mass in “cores’, then
ipGo% 5 b divide by t. to get SFR
l0g (£/ P o)
* Result:

g~ 0.015 0068 (9 [/ 30) 032

3.16 10 31.6 1Q0
L I R L I L B L L L L L N

e ~ 1% for any turbulent, virialized object




Putting it Together: The Total
Gas Star Formation Law

(Krumholz, McKee, & Tumlinson 2009)
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Putting it Together: The Total
Gas Star Formation Law

(Krumholz, McKee, & Tumlinson 2009)

Lines:
theory

Contours:
THINGS,
Bigiel et al.
2008

Symbols:
literature
data
compiled by
Bigiel et al.
2008




Putting it Together: The Total
Gas Star Formation Law

(Krumholz, McKee, & Tumlinson 2009)
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Putting it Together: The Total
Gas Star Formation Law

(Krumholz, McKee, & Tumlinson 2009)
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Putting it Together: The Total
Gas Star Formation Law

(Krumholz, McKee, & Tumlinson 2009)
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Putting it Together: The Total
Gas Star Formation Law

(Krumholz, McKee, & Tumlinson 2009)
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Atomic and Molecular Star

Formation Laws

z.:o (MG) yr-1 kpc-z)

Contours: THINGS (Bigiel et al. 2008)
Lines: Theory for metallicities from 0.1 x solar to 3 x solar

(Krumholz, McKee, & Tumlinson 2009)




Summary
The SFR depends on:
1. The molecular fraction f,, — determined

by radiation and chemistry, depends on
galaxy Z, Z

. The free-fall time in molecular clouds f; —
determined by SF feedback in low X
galaxies, by galaxy X in high X galaxies

. The star formation rate per free-fall time ¢
— this Is always ~1% due to the physics
of turbulence




