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What Quenches SF?

e Many possibilities:

m |lonization
e |ocal
® remote

m [idal stripping
m magnetic fields
m SMBH jets

m Supernovae

m Lack of gas

e | will mainly consider the last two.




Need for Quenching

e Star formation is not as efficient as predicted
by simple models (white & Frenk 1991) with:

m baryon cooling
m uniform star formation efficiency in cold gas

e high masses ® [ow masses

m X-ray emission m too many dwarfs
suggests cooling predicted (Klypin+ 99,
flows around Moore+ 99)

”?aSS'Ve galaxies m even with recent SDSS
m high rate of gas

: : discoveries, observed
cooling should drive i

star formation that is luminosity function
not observed overpredicted




ngh Masses ® AGN outflows appear to

heat cluster gas

magnetic support in
center? (Fabian et al 08)

»

Perseus cluster with Chandra
Fabian et al 06
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Low Masses

e outflows the problem

m scaling arguments: (Larson
1974; Dekel & Silk 1986)
suggested outflows could T
explain low observed dwarf :
abundance

e thresholds

m reduced SF efficiency at
low masses may be
sufficient to explain
observations (e.g. Kravtsov

09) 20 30 40 50 6070
Ve (km/s)

ACDM satellites

Local Group dwarfs

Kravtsov 09




Outflows

e Fast galactic winds
e Cold gas at high velocities (Martin 05, Rupke + 05)
® Murray + 05 proposed radiation driven winds

® conserve momentum 1 B B

lose more mass

Vv, XO M o —
O

e (perhaps could be driven by SNe?)

e Davé & Oppenheimer 08 show that assuming
momentum-driven mass loss leads to
reasonable dwarf galaxy spectrum




|Isolated Dwarfs

easy to blow metals out, much harder to blow gas away
1 SN /3 Myr 300 Kyr 30 Kyr
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Mac Low & Ferrara 1999

D’Ercole & Brighenti 1999



Fragile+ 04

SNe distributed over 80% of  SNe distributed over 30%

disk => 20% metal loss of disk => 60% metal loss

- 10*T erg s (1 SN /300 yr)
- distributed over 80% of a 10°
Mo gas disk




Dwarfs with Halos

only very high efficiency SF blows away gas!
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log n (cm) Fujita+ 09

ULIRG winds
can accelerate
cold gas
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Density (g cm™®)




Fast Cold Gas from SN Wind

Fujita+ 09

Na | Doublet Absorptlon_LlneS

Intensity

Intensity
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but little mass loss! observations from Martin 05




Gravitational Instability

Does this offer a robust threshold mechanism?

linear analysis of axisymmetric, radial gravitational
instability

Stars: Q, = k0, / (3.36G3,) Gas: Qg = kCy/ (1GZy)
(Toomre 64)

(Goldreich & Lynden-
Stars & gas together (Rafikov 2001):

Bell 65)

1 [1—e_q210(q2)-‘ 2¢gR

+

Q. q0, 0,(1+4¢*R*)

K -- epicyclic frequency
lo -- Bessel fcn of order O,

25, 2y -- star, gas surf. den
q = ko, /K, R =c4/0;s .

o, -- radial stellar vel disp

cy -- isotherm gas sound spd
Instability when Qs < 7.




Star Formation Thresholds
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Sta r 90% of star formation
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Tamburro, Rix, Mac Low + 09

A Lo I | Why constant velocity
2 1.._+ L # I¢ F - i’ }F dispersion in H |?
T, W idely observed in
THINGS velocity dispersions local universe.

NGC 1058
Petric & Rupen 08
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IS transition real story?
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Sellwood & Balbus 99, Mac Low & Klessen 04
see sims by Piontek & Ostriker 04, 05, 07

Schaye 04 argues for UV heating
maintaining outer disk KE => no
cold phase there.
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Joung, Mac Low & Bryan 09

912x Mllky Way SN rate

assuming Kennicutt- RN T 1 _
Schmidt law for gas i
rf density. 8 : :
surface density - “HI linewidth”
—~ 10 : 8 e _:
SN feedback LI _Ogtapterrors ;
. & S TP - R 4
does NOT drive £ | i § RS
high HI velocity ° : Oy,1D
dispersions. °
T .
cf. Monaco 04a : 5
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Global Schmidt Law

constant velocity dispersion can reproduce (too)
models observations

total gas
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[.ocal Schmidt
Law

threshold seen at
outer edge from Toomre
iInstability

as seen by Bigiel + 087
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Cosmological Context

*Kravtsov (2003):
*Cosmological ICs
«Star formation law

P. * P,
*No effective feedback
Measured SF in
many galaxies in one
model

Downturn seen by
Wolfe & Chen 06 at z =
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37 (Kravtsov talk)
*see also Tassis + 09



LMC Stability

Stars: Spitzer 3 um,
constant o.

Atomic gas: HI (Kim +)

Molecules: CO (Fukui +)

—-86"

YSOs: Spitzer 8 um

Qg - blue scale

YSOs: red dots

gas only'

Q, =

-71°

nGZ <1 (gas)
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LMC Stability

Stars: Spitzer 3 um,

constant o
Atomic gas: HI (Kim +)
Molecules: CO (Fukui +) .

YSOs: Spitzer 8 um

Qs blue scale

YSOs: red dots

Stars & gas: ot
Q from Rafikov 01
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LMC Stability

e \We assumed constant velocity
dispersion o. = 15 km s! for stellar disk.

e Leroy + 08 argue that instead it is the
stellar scale height that is constant,
giving a velocity dispersion o. « X.12

e This would imply entire disk stable!

e Further observations of o. needed at
large R (see upcoming work by Zasov +;
Herrmann & Ciardullo; K. Jackson & Hunter; )




Instability drives SF
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Assume IR bright
young stars all
about the same age.

Measure number of
stars in different bins
of Qg

Normalize by area
of each bin on
galaxy.

This gives a
timescale.
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Global SF
Efficiency

e, =M, /M,, =M

init

constant local
efficiency
Implies wide
variation in
global
efficiency.

90 USSSaI '3 MO 0BIN 1T

More stable
galaxies have
far lower global
efficiency.
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Conclusions

e Supernova or AGN feedback effective at
keeping hot gas hot, but not at heating up cold
gas.

m Primary effect in star forming regions of galaxies is
likely to help maintain velocity dispersion.

m Monster in bathtub must splash in the hot gas
e Nonlinear gravitational instability seems able to
function as an exponential cutoff.

m necessary but insufficient to explain decline in
efficiency at low masses, particularly at high redshift.




