Protostar Mass Due to Infall and Dispersal

Phil Myers
Harvard-Smithsonian Center for Astrophysics

Introduction

Origin of stars is well studied...

birthplaces star-forming gas groupings (e.g. Evans et al 09)

Origins of stellar mass...?

Model

cores without boundaries dispersal v. accretion sets M_{\star}

Results

low M_{\star} from within core high M_{\star} from beyond core varying dispersal times set IMF only clusters make high M_{\star}

Cores without boundaries

Observations show "cores" with steep n superposed on "clumps" with shallow n (Kirk et al 06). No "boundary" as in BE model.

Simple core-environment model $n=n_{SIS}+n_{E}$ starting to collapse

"Core" defined where steep meets shallow

"Isolated" cores $low n_E$ sparse "Clustered" cores $high n_E$ crowded

Different environments U, L, F

Available mass increases with t_f

Mass (<r) available for spherical accretion in terms of core mass and free fall time (r):

$$M_{gas} = M_{core}\theta(1-\theta^2)^{-3/2}$$

$$\theta = t_f(r)/t_E < 1$$
, $M_{core} \approx M_J/4$

For fixed t_E , $M_{gas} = M_{gas}(t_f)$

Early: dM/dt = constant (~ Shu 77)

Late: $dM/dt \sim M^{5/3}$ (~ Bondi 52)

$$T = 10 \text{ K} \text{ n}_E = 10^4 \text{ cm}^{-3} \text{ Myers } 09$$

Available mass increases with n_E

In a free-fall time, "critical" density n_{E0} sets equal mass available from core and environment

Isolated ★ formation

 $n_{\rm E}$ < $n_{\rm E0}$ widely spaced cores most mass due to core M increases weakly with $n_{\rm E}$

Clustered ★ formation

 $n_{\rm E}$ > $n_{\rm E0}$ crowded cores most mass due to environment M increases strongly with $n_{\rm E}$

Increasing environment DM increases from F to L to U

Cores disperse quickly

L43 Myers et al 88

Arce & Sargent 06

B5 Velusamy & Langer 98

Statistics of outflows, stars in cores: cores with stars disperse in << 1 Myr	
associated cores	all Class 0 protostars 0.03 of T Tauri stars (Jørgensen et al 08)
dispersal	outflows
agents	heating, unbinding turbulence, ionization competition, migration
dispersal	
time scale	t _d

Dispersal and accretion set M_{*}

Protostar mass from dispersing, accreting gas, mass shells $dM(r,t)=dM(a,0) \exp(-t/t_d)$

Solution follows Hunter 62, no P, B, J, gas disperses but protostar (and disk) keep mass.

T=10 K

 $n_u = 10^3 \text{ cm}^{-3}$

Myers 08

 $M_{star}(t) \rightarrow final value M_{\star}$ $M_{\star} \approx M_{gas} (t_d = t_f) \text{ justifies}$ "sudden stopping" → $M_{\star} \approx M_{core} \theta (1-\theta^2)^{-3/2}$

Protostar mass function

If cold spherical accretion stops at t_f

$$M_{\star} = M_{core} \theta (1 - \theta^2)^{-3/2}$$
 $\theta = t_f / t_E < 1$

If θ same for all cores, $M_{\star}/M_{core} = constant$

MFs have same shape (as in ALL 07)

But why should θ be constant?

If distributed θ , $M_{\star}/M_{core} \neq constant$

Simplest distribution: equally likely stopping (Basu & Jones 04)

$$p(\theta) \sim \exp(-\theta/<\theta>)$$

Alves, Lada & Lada 07

Clusters make more massive stars

MFs for low and high n_E

 $low n_E$ isolated $\star s$ Taurus high n_E clustered $\star s$ Orion

 $T=10 \text{ K} \quad \langle t_{\text{stop}} \rangle = 0.04 \text{ Myr}$

Same low-mass peak

due to accretion from within core $m_m \sim \sigma^3 t_f$, independent of n_E

More massive stars

due to more accretion from beyond core for high n_E , only in clusters

Prediction: only low-mass stars should form in filaments of low n_E

Caveats

Models are very idealized

Core-environment model ignores B, turbulence Accretion model neglects thermal pressure, \mathbf{B} , \mathbf{J} Dense gas dispersal \approx sudden stopping of accretion

Probability of stopping accretion needs study

probably not confined to a unique time decreasing with time, not necessarily exponential

Match to IMF is not "universal"

high-mass tail only for dense environments same MF shape requires $< t_d > \sim T^{-3/2}, n_E \sim T^3$

Summary

Core-environment systems have no accretion boundaries

Accretion and dispersal set protostar mass

Distributed stopping can match IMF

Low mass stars form in both isolated and clustered regions

High mass stars form only in clustered regions

Isolated cores in filaments form only low-mass stars

Why is model CMF narrower than observed?

They may not be so different. Model CMF: each core makes 1 star.

Observed CMF: most massive cores make >1 star, least massive cores make 0 stars.

Correction narrows observed CMF, closer to model CMF.

Temperatures of model CMF: half-max at 7 K and 15 K, similar to T(NH₃) in Perseus, 9-15 K (Rosolowsky et al 07).

Identical cores, declining $p(\theta)$ can match IMF

 $p_0(\theta)$ from "equally likely stopping"-gives MF_0 ; modified $p_1(\theta)$ gives better fit MF_1

M_★ increases with dispersal time

 $M_{\bigstar}(t_d)$ from accretion v. dispersal

isothermal sphere in uniform medium T=10 K, $n_u=10^3 \text{ cm}^{-3}$

 M_{\star} increases with t_d

 M_{\star} can arise within core, or within and beyond core

 $M_{\star} \approx$ initial gas mass in radius $t_{ff} = t_{d}$ dispersal time scale \approx stopping time

Myers 08

MFs for distributed stopping times

Simplest distribution: equally likely stopping (Basu & Jones 04)

$$p(\theta) \sim \exp(-\theta/<\theta>)$$
 $\theta = t_{stop}/t_E$
T=10 K n_E =3 10⁴ cm⁻³ $< t_{stop}> = 0.04$ Myr

Identical cores MF₀

very close to IMF, but too narrow, high mass tail not exactly a power law

Distributed cores MF

Log-normal CMF, σ_{CMF} =0.5 matches IMF (also match with other p(θ)s, CMFs)

IMF: Kroupa 02 Myers 09