Regulation of Galactic Star Formation: Dynamical Effects

Eve Ostriker Maryland

Woong-Tae Kim Seoul

Hiroshi Koyama Riken

Rob Piontek Potsdam

Rahul Shetty Harvard

Outline

- Introduction
- Toomre Q parameter and SF/disk regulation
- Schmidt laws in turbulent, multiphase disks
- SFR recipes from mean conditions?
- R_{mol} and vertical equilibrium of the ISM

Dynamical Effects on ISM

- disk shear
- disk rotation ⇒ Coriolis forces
- stellar disk: vertical gravity, spiral pattern, self-gravity
- gas self-gravity
- thermal pressure gradients
- heating & cooling ⇒cloudy density structure
- turbulence + other Reynolds stresses
- magnetic stresses
- cosmic ray pressure
- radiation pressure
- spatial scales: <pc to >10kpc
- $time\ scales: <10^6\ yr\ to >10^9\ yr$

Very complex system! Proceed deliberately...

Star formation schematic

- Diffuse gas (HI and/or H₂) collects into self-gravitating GMCs
- Turbulence within GMCs creates (& disperses) overdense structures
- Densest cores collapse to make stars
- Feedback from SF (HII regions, winds, radiation pressure, SN blasts) destroys GMCs

$$\Sigma_{SFR} = \varepsilon_{GMC} \frac{\Sigma_{GMC}}{t_{GMC}} \rightarrow \varepsilon_{GMC} \frac{\Sigma_{diff}}{t_{diff}} \quad OR \quad \Sigma_{SFR} = \varepsilon_{ff,dense} \frac{\Sigma_{dense}}{t_{ff,dense}}$$

- Proportion of gas in each component, timescales for GMC formation and destruction, efficiency over lifetime or over free-fall time... all depend on ISM dynamical processes
- Consider GMC formation first in a simple case...

GMC formation via self-gravitating instabilities

- Instabilities in rotating disks:
 - Limited on small scales by thermal pressure (sound waves)
 - Limited on large scales by angular momentum (Coriolis forces)
- * Dispersion relation for axisymmetric perturbations:

$$\omega^{2} = \kappa^{2} + \kappa^{2} v_{th}^{2} = \frac{2\pi G\Sigma}{1 + kH} k \quad \text{for} \quad \kappa^{2} = \frac{1}{R^{3}} \frac{\partial(\Omega^{2}R^{4})}{\partial R} \rightarrow 2\Omega^{2}$$

$$- \text{Mass } \lambda^{2}\Sigma \sim 10 \text{ v}_{th}^{4} / (G^{2}\Sigma) \sim 10^{7} \text{ M}_{\odot} (\Sigma_{gal} / 10 \text{ M}_{\odot} \text{ pc}^{-2})^{-1}$$

* Need low Toomre parameter $Q = \kappa v_{th} / \pi G \Sigma_{gal}$ for instability

$$Q = 1.5 \left(\frac{v_{th}}{7 \, km s^{-1}} \right) \left(\frac{V_c}{200 \, km s^{-1}} \right) \left(\frac{R}{10 \, kpc} \right)^{-1} \left(\frac{\Sigma_{gal}}{10 \, M_{\odot} pc^{-2}} \right)^{-1}$$

 Nonaxisymmetric perturbations to make GMCs are also limited by shear, but they can grow via the swing amplifier if Q is sufficiently low

Large-scale dynamics with shear

For moderate-scale ISM dynamics (L>H), must include background sheared rotation. May consider a local patch of the disk:

Nonlinear development of swing amplifier

- Thresholds for nonlinear instability:
 - Q_{th} =1.2-1.4 unmagnetized and magnetized cases, thin disk
 - Q_{th} <1 unmagnetized case, thick disk
 - Q_{th}~ 1.4 including stellar disk; unmagnetized thick disk
 - − Q_{th}~1 strongly magnetized case, thick disk
 - Q_{th}~1.6 weakly magnetized case, thick disk
- Growth times: t ~ t_{orb}
- Characteristic cloud mass $M \sim M_J \Rightarrow \sim 10^7 M_{\odot} (\Sigma_{\rm gal}/10 M_{\odot} \, \rm pc^{-2})^{-1}$

Kim & Ostriker (2001, 2007)

Kim, Ostriker, & Stone (2002, 2003)

7/7/09

$$v_A/c_s=0.3, Q=1.5$$

With spiral structure...

- Jeans mass and Jeans time lower in spiral arms, due to shock compression of gas
- Self-gravity leads to growth of spiral-arm spurs
- Clouds form in arm if shock is strong
- Clouds form downstream if shock is weaker
- Magnetic field is important for maintaining arm integrity
- Cloud masses 10^6 - $10^7 M_{\odot}$
- Magnetic braking removes spin angular momentum from clouds
- Internal turbulence is required to fragment massive GMAs into lower-mass GMCs.

Kim & Ostriker (2002)

see also Kim, Bonnell talks

Spurs and clouds in global model

7/7/09

Real ISM: multiphase, turbulent!

- Is gravitational stability of multiphase ISM regulated by Q_{eff} with v_{turb} and v_{therm} contributions from all components?
- Does control of v_{turb} from energetic feedback yield self-regulated Q_{eff} and SFR?
- What is the role of disk substructure and the vertical gas distribution in setting the SFR?

Disk thickness/multiphase effects?

Consider vertically-averaged timescale for self-gravity:

$$t_g = (G\overline{\rho})^{-1/2} = \left(\frac{G\Sigma_{gas}}{2H_{gas}}\right)^{-1/2}$$

- For disk in vertical equilibrium with $Q_{gas}/Q_*=const$, $H_{gas} \sim v_z^2/(G\Sigma_{gas}) \Rightarrow t_g \sim v_z/(G\Sigma_{gas})$
- If $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas} / t_{\rm g}$, then $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^{2} / (G v_{\rm z}) \Rightarrow$ Schmidt Law would be $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^{2}$ for $v_{\rm z} \sim const$ Schmidt Law would be $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^{1.5}$ for $H_{\rm gas} \sim const.$, $v_{\rm z} \propto \Sigma_{\rm gas}^{0.5}$
- But for multiphase disk, t_g from the vertically-averaged (volume-weighted) density may not represent t_g in most of the gas...

Vertically-resolved disk models

- Include:
 - sheared rotation (V_c=const),
 - heating and cooling with bistable thermal equilibrium
 - fixed stellar gravity
 - HII region feedback: intense local heating
 - gas self-gravity
- Explore a range of Σ_{gas} , Ω , and ρ_*

Koyama & Ostriker (2009a)

Heating & Cooling

Koyama & Inutsuka (2000)

Temperature and density -- evolution

Vertically-resolved disk models

- Independent environmental parameters: Σ_{gas} , Ω , and ρ_*
- Measure:
 - Toomre Q, including turbulent velocity dispersion
 - vertical velocity dispersion and disk thickness
 - virial parameters for gas components

 - midplane and mean pressure
 proportions of dense gas $\Rightarrow \sum_{SFR} = \varepsilon_{ff,dense} \frac{\sum_{dense}}{t_{ff,dense}}$
- See: Koyama & Ostriker (2009a,b)

Toomre parameter

- Self-regulation of SF is clear:
 - turbulence driven by feedback from SF raises Q
 - important in cold, dense gas
- However, leverage of turbulent feedback on SFR is limited...

$$Q = 0.15 \left(\frac{v_{eff}}{7kms^{-1}} \right) \left(\frac{V_c}{200kms^{-1}} \right) \left(\frac{R}{10kpc} \right)^{-1} \left(\frac{\Sigma_{gas}}{100M_{\odot}pc^{-2}} \right)^{-1}$$

 Main evolutionary response in galaxies may be converting gas to stars until Q ~ Q_{crit}

Averaging Star Formation

- Observations of SF are often described by empirical Schmidt laws: $\Sigma_{SF} = A \Sigma_{gas}^{1+p}$
- Index *p* corresponds to $t_{SF} = \Sigma_{gas} / \Sigma_{SF} \propto \Sigma_{gas}^{-p}$
 - Different tracers have different t_{SF}
 - -p = 0 implies constant t_{SF} for a given tracer
 - -p > 0 implies t_{SF} decreases with increasing Σ_{gas}
 - Observations show a range 1+p=1-2 ⇒ p=0-1, depending on tracer, averaging scale

Questions:

- Can simulations reproduce observed gas-SF relationships?
- How does including environmental parameters other than Σ_{gas} change the relationship?

e.g.:
$$\Sigma_*$$
, Ω , σ_{gas} , σ_*

- Are observed relationships "fundamental", or a result of galactic evolution?
- Can SF-gas relations be captured with simplified models?

Schmidt laws in vertically-resolved turbulent, multiphase models with $\Omega \propto \Sigma_{\rm gas}$

Q series: Q_{gas}=const, Q_{*}=const

R series: Q_{gas} =const, ρ_* =const

but if Ω = constant...

- $\sum_{SFR} vs \sum_{gas}$ is not powerlaw; not independent of density threshold
- Conclusion: SFR is inherently dependent on environment including rotation, not just the available supply of gas
- Observed Schmidt laws suggest evolutionary selection effect:

 $\Sigma_{\rm gas}$ decreases to make $Q = \kappa \, \delta v / (\pi \, G \, \Sigma_{\rm gas}) \sim 1$

7/7/09

SF predictions?

 Simple SF recipes are often based on large-scale timescales, e.g.:

$$\begin{split} &- \Sigma_{\rm SFR} \propto \Sigma_{\rm gas}/t_{\rm orb} \\ &- \Sigma_{\rm SFR} \propto \Sigma_{\rm gas}/t_{\rm ff} (\varrho_{\rm ave} = \Sigma_{\rm gas}/H) \end{split}$$

- These yield too-steep profiles
- Need to resolve vertical disk structure and turbulent, multiphase warm/cold gas to obtain accurate SFR in simulations

Observed H₂/HI

 Blitz & Rosolowsky (2006) found that

$$R_{mol} = \Sigma(H_2) / \Sigma(HI)$$

increases with galactic gas and stellar density as

$$R_{mol} = \left[\frac{P_{ext}/k}{(3.5 \pm 0.6) \times 10^4} \right]^{0.92 \pm 0.07}$$

- BR P_{ext} is estimate of midplane pressure
- Leroy et al (2008) find similar relation

R_{mol} in simulations

- vertically-resolved, multiphase, turbulent simulations have R_{mol} consistent with observations if $\Omega \propto \Sigma_{\rm gas}$
- ...but not if Ω = const
- Hydrostatic models have R_{mol} much larger than observed values

7/7/09

Origin of R_{mol} relation?

 In vertical equilibrium, for multiphase, turbulent disk (Koyama & Ostriker 2009b)

$$P_{0,tot} \equiv \sigma_z^2 \rho_0 = (c_s^2 + v_z^2) \rho_0 = \Sigma_{gas} \left(G \Sigma_{gas} + \left[\left(G \Sigma_{gas} \right)^2 + 2G \rho_* \sigma_z^2 \right]^{1/2} \right)$$

• Atomic gas midplane thermal pressure is $\rho_0 c_s^2 \approx P_{\text{min,cold}}$

$$P_{\min,cold} = c_s^2 \rho_0 = \frac{c_s^2}{c_s^2 + v_z^2} \rho_0 = \frac{c_s^2}{\sigma_z^2} \Sigma_{HI} \left(G \Sigma_{HI} + \left[(G \Sigma_{HI})^2 + 2G \rho_* \sigma_z^2 \right]^{1/2} \right)$$

$$\Rightarrow \Sigma_{HI} = \left(\frac{P_{\min,cold}}{2G} \right)^{1/2} \frac{\sigma_z / c_s}{\left[1 + \frac{\rho_* c_s^2}{P_{\min,cold}} \right]^{1/2}}$$

Predicted molecular-to-atomic ratio is

$$\frac{\Sigma_{H2}}{\Sigma_{HI}} = \Sigma_{H2} (2G\rho_*)^{1/2} \frac{c_s^2/\sigma_z}{P_{\min,cold}} \left[1 + \frac{P_{\min,cold}}{\rho_* c_s^2} \right]^{1/2} \sim \frac{P_{BR}}{const.}$$

R_{mol} comparison using simulation

HI saturation?

• With
$$\Sigma_{HI} = \left(\frac{P_{\min,cold}}{2G}\right)^{1/2} \frac{\sigma_z/c_s}{\left[1 + \frac{\rho_* c_s^2}{P_{\min,cold}}\right]^{1/2}}$$
, the maximum

value of $\Sigma_{\rm HI}$ is $\sim (P_{\rm min,cold}/G)^{1/2} \approx 10~{\rm M}_{\odot}~{\rm pc}^{-2}$

 Relatively insensitive to metallicity, radiation field; from Wolfire et al (2005),

$$\begin{split} \frac{P_{\min}}{k} &\equiv 1.1 n_{\min} T_{(\min)} \\ &\simeq 8500 \frac{G_0' \Big(Z_d' / Z_g' \Big)}{1 + 3.1 \big(G_0' Z_d' / \zeta_t' \big)^{0.365}} \text{ cm}^{-3} \text{ K} \;, \end{split}$$

Bigiel et al (2008)

 May contribute to observed HI "saturation" (Wong & Blitz 2002, Bigiel et al 2008)

Summary

- Star formation is inherently affected by galactic environment:
 - galactic rotation (Ω) , shear, and ρ_* not just $\Sigma_{\rm gas}$
 - detailed state of gas is also important...
- Including disk thickness, the stellar component, and turbulent magnetic fields, the threshold Toomre Q_{gas} is ≈ 1.5
- GMC formation in spiral arms is favored by high $\Sigma_{\rm gas}$, and spiral-arm spurs enhance interarm GMC/star formation
- Feedback from star formation raises the turbulence level and $Q_{\rm eff}$, but leverage on self-regulated SF may be limited
- Observed SF/gas relations may result from evolutionary selection: gas is depleted until Q increases to ~1
- Vertically-resolved simulations with feedback-driven turbulence, multiphase gas have Schmidt relations and R_{mol} consistent with observations provided Ω and Σ_{gas} increase together
- Simple SF recipes/unresolved disks yield too-steep Σ_{SFR} vs. Σ_{gas}
- Dynamics/thermodynamics may contribute to limiting $\Sigma_{\rm HI}$

Global model with "SN" feedback

- To measure SFR, require steady state of cloud formation and destruction
- $\Sigma_{\rm SF} \propto \Sigma_{\rm dense}$
- SN momentum input ∝Σ_{SF}
- SN-driven turbulence both creates and destroys dense clouds...

Shetty & Ostriker (2008)

Global SFR in models with feedback

- Increase in E_{SN} at fixed t_{SF,dense} lowers SFR
- Sub-linear increase in SFR with 1/t_{SF,dense} ⇒feedback reduces fraction of dense gas
- in net, feedback reduces SFR

7/7/09

Thermal Instability and HI structure

- Thermal instability develops due to bistable heating/cooling curve (Field 1965)
- Medium separates into cold clouds + warm intercloud gas
- Overall cooling towards $P_{min,cold}$

