On the (Non)Evolution of HI "Disks" over Cosmic Time

J. XAVIER PROCHASKA UCO/LICK OBSERVATORY

(IMPS: INTER[GALACTIC-STELLAR] MEDIUM PROGRAM OF STUDIES)

"The Swimming Pool Theory of Galaxy Formation"

A.M. WOLFE (UC SAN DIEGO)
S. HERBERT-FORT (ARIZONA)

Overview

- Goal: Discuss the global evolution of HI in galaxies across cosmic time
 - Secondary: Provide introduction for talks that follow
- Motivation
 - ▶ HI gas feeds star formation (via H₂)
 - Total HI content is a balance between SF, accretion, and 'feedback'
 - HI is a signpost for recent/current/future SF
 - ▶ The 'Cosmic' Schmidt Law

Galactic Σ_{HI} Profiles

Analysis

- De-projection by inclination
- Average azimuthally
- Plot
- Common characteristics
 - ▶ HI 'holes' at the center
 - ▶ Steep decline for R<R₂₅
 - Power-law (Metsel) beyond

Mapping HI at z>0

• 21cm?

- Not with today's telescopes
- ▶ SKA (i.e. >2020)
- Ha, Lya
 - Difficult observations
 - Primarily trace ionized H gas
 - ◆ But connected to atomic/molecular gas
- HI?
 - Lyα absorption

SHAPIRO+ 2008

 $10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

$$10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$$

- N_{HI} frequency distribution
 - Normalized to a comoving length

$10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

- N_{HI} frequency distribution
 - Normalized to a comoving length
- Measure the N_{HI} distribution for all galaxies in a shell
 - ▶ Shell has width Δz (e.g. 1Gpc)
 - Projected surface densities

$10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

- N_{HI} frequency distribution
 - Normalized to a comoving length
- Measure the N_{HI} distribution for all galaxies in a shell
 - ▶ Shell has width Δz (e.g. 1Gpc)
 - Projected surface densities
- f(N_{HI})
 - # of cells with N_{HI} per dN_{HI} per comoving path length
 - ◆ f(N_{HI}) is akin to a luminosity function
 - Distribution of projected Σ_{HI} for all galaxies in a shell of the sky
 - (in a finite volume)

$10^{21} \text{ cm}^{-2} = 8 \text{ M}_{\text{Sun}} \text{ pc}^{-2}$

- N_{HI} frequency distribution
 - Normalized to a comoving length
- Measure the N_{HI} distribution for all galaxies in a shell
 - Shell has width Δz (e.g. 1Gpc)
 - Projected surface densities
- f(N_{HI})
 - # of cells with N_{HI} per dN_{HI} per comoving path length
 - ◆ f(N_{HI}) is akin to a luminosity function
 - Distribution of projected Σ_{HI} for all galaxies in a shell of the sky
 - (in a finite volume)

How do we measure this observationally?

Measuring f(N_{HI}) at z=0

Ideally

- Analyze an all-sky 21cm map at high spatial resolution
- Alternate approach
 - i) Choose a sample of galaxies with a wide range of luminosity: L
 - ii) Map in 21cm at high spatial res.
 - iii) Weight+normalize the results by the luminosity function $\Phi(L)$
- WHISP
 - ▶ Zwaan+ 2005
 - ▶ Beam size of ~1kpc diameter

The overlap in the distribution functions seems a remarkable 'coincidence'. (Schaye 2001; Krumholz+ 2009)

Zeroth Moment: "Covering Fraction"

Zeroth Moment: "Covering Fraction"

$$\ell(X) = \int_{N_{th}}^{\infty} f(N_{\rm HI}) dN_{\rm HI}$$

(DLA CRITERION)

$$N_{th} = 2 \times 10^{20} \,\mathrm{cm}^{-2} \ (1.6 M_{\odot} \,\mathrm{pc}^{-2})$$

 $\ell(X)$ is the number of galaxies intersected per comoving pathlength (ΔX).

For $\Delta X = 1$ Gpc, one intersects 0.01 galaxies on average.

Covering fraction:

 $C_A = 1\%$ for a 1Gpc shell at z=0

Zeroth Moment: "Covering Fraction"

$$\ell(X) = \int_{N_{th}}^{\infty} f(N_{\rm HI}) dN_{\rm HI}$$

(DLA CRITERION)

(DLA CRITERION)
$$N_{th} = 2 \times 10^{20} \, \text{cm}^{-2} \quad (1.6 M_{\odot} \, \text{pc}^{-2})$$

 $\ell(X)$ is the number of galaxies intersected per comoving pathlength (ΔX).

For $\Delta X = 1$ Gpc, one intersects 0.01 galaxies on average.

Covering fraction:

 $C_A = 1\%$ for a 1Gpc shell at z=0

Note: $C_A(H_2) = 0.006\%$

1% Covering Fraction to 1.6 M_{Sun} pc⁻²

$$\rho_{\rm HI} = \frac{m_p H_0}{c} \int_{N_{th}}^{\infty} N_{\rm HI} f(N_{\rm HI}) dN_{\rm HI}$$

Aside: In practice, Q_{HI} is derived from all-sky surveys of HI galaxies

$$\rho_{\rm HI} = \frac{m_p H_0}{c} \int_{N_{th}}^{\infty} N_{\rm HI} f(N_{\rm HI}) dN_{\rm HI}$$

Aside: In practice, QHI is derived from all-sky surveys of HI galaxies

 $Q_{HI}(z=0) = 5.2 \times 10^7 M_{Sun} Mpc^{-3}$

$$\rho_{\rm HI} = \frac{m_p H_0}{c} \int_{N_{th}}^{\infty} N_{\rm HI} f(N_{\rm HI}) dN_{\rm HI}$$

Aside: In practice, QHI is derived from all-sky surveys of HI galaxies

$$Q_{HI}(z=0) = 5.2 \times 10^7 M_{Sun} Mpc^{-3}$$

$$Q_{H2}(z=0) = 1.1 \times 10^7 M_{Sun} Mpc^{-3}$$

$$\rho_{\rm HI} = \frac{m_p H_0}{c} \int_{N_{th}}^{\infty} N_{\rm HI} f(N_{\rm HI}) dN_{\rm HI}$$

Aside: In practice, QHI is derived from all-sky surveys of HI galaxies

$$Q_{HI}(z=0) = 5.2 \times 10^7 M_{Sun} Mpc^{-3}$$

$$Q_{H2}(z=0) = 1.1 \times 10^7 M_{Sun} Mpc^{-3}$$

$$Q_{Stars}(z=0) = 26 \times 10^7 M_{Sun} Mpc^{-3}$$

Cosmic Evolution of HI in Galaxies

- How does HI evolve in galaxies in time?
- Are galaxies smaller in the past, e.g. lower C_A?
- Are galaxies more gas rich in the past?

BOUWENS+ 2008

Heading to the High z Universe

Heading to the High z Universe

• 21cm emission is 'hopeless'

Heading to the High z Universe

- 21cm emission is 'hopeless'
- Lya in Absorption
 - Damped portion of the curve-of-growth
 - ▶ N_{HI} well measured in modest quality spectra
 - Can use GRBs, galaxies

Heading to the High z Universe

- 21cm emission is 'hopeless'
- Lya in Absorption
 - Damped portion of the curve-of-growth
 - N_{HI} well measured in modest quality spectra
 - Can use GRBs, galaxies

SDSS DR5

PROCHASKA+ 2005 PROCHASKA & WOLFE 2009

• ~1000 DLAs

- Towards several thousand quasars
- Automated algorithm with refined (by-hand) analysis
- z=2.2 to 5

- No evolution from z=2 to 4
 - Gas remains distributed in a self-similar fashion across this 1Gyr

- No evolution from z=2 to 4
 - Gas remains distributed in a self-similar fashion across this 1Gyr
- No evolution from z=2 to 0!!
 - At all cosmic time, galaxies (as a population) have the same relative distribution of projected Σ_{HI}
 - On pc scales

- No evolution from z=2 to 4
 - Gas remains distributed in a self-similar fashion across this 1Gyr
- No evolution from z=2 to 0!!
 - At all cosmic time, galaxies (as a population) have the same relative distribution of projected Σ_{HI}
 - On pc scales
- No shift in the N_{HI} break with z
 - ▶ To within a factor of ~2
 - Consistent with H₂ physics

(Non)Evolution in the f(N_{HI}) Moments

(Non)Evolution in the f(N_{HI}) Moments

(Non)Evolution in the f(N_{HI}) Moments

Non-Evolution in the f(N_{HI}) Moments

- Galaxies today have essentially the same total covering fraction and HI mass as 10 Gyr ago
- Am willing to interpolate
 - → i.e. constant since z~2
- But, we know stars have formed since z~2
 - Driven by gas accretion
 - (See Keres)
 - Disks' are critically unstable
 (Q~1) to SF at all times

- Construction
 - Dark matter halo forms
 - Gas pools in
 - ◆ This may occur very rapidly (i.e. coeval)
 - **♦** Cools+recombines to form HI
- Pool fills
 - Excess water spills into H₂
 - → H₂ rapidly converted to stars
 - HI level maintained
- Accretion stops
 - SF slows
 - Pool stays full
 - ◆ Absent a major (destructive) event

- Construction
 - Dark matter halo forms
 - Gas pools in
 - This may occur very rapidly (i.e. coeval)
 - ◆ Cools+recombines to form HI
- Pool fills
 - Excess water spills into H₂
 - → H₂ rapidly converted to stars
 - ✦ HI level maintained
- Accretion stops
 - SF slows
 - Pool stays full
 - ◆ Absent a major (destructive) event

- Construction
 - Dark matter halo forms
 - Gas pools in
 - This may occur very rapidly (i.e. coeval)
 - ◆ Cools+recombines to form HI
- Pool fills
 - Excess water spills into H₂
 - ✦ H₂ rapidly converted to stars
 - ◆ HI level maintained
- Accretion stops
 - SF slows
 - Pool stays full
 - ◆ Absent a major (destructive) event

- At z~2, all of the swimming pools are in place (and full)
 - i.e. Halos with $M < 10^{12} M_{Sun}$
 - Predicted by LCDM
- Implications
 - ► HI 'disks' at z~2 are as large as today
 - True as a population
 - Very few HI disks are destroyed since z~2
 - Those that are destroyed are replaced

Evolution in the f(N_{HI}) Moments

- 2x decrease in C_A and Q_{HI} from z=4 to 2.5 (1 Gyr)
 - ► Eliminate, uniformly, gas at all surface densities
- Star formation?
 - Unlikely to remove gas with low Σ_{HI}
- Violent' processes
 - Mergers
 - Feedback

Evolution in the f(N_{HI}) Moments

- 2x decrease in C_A and Q_{HI} from z=4 to 2.5 (1 Gyr)
 - ► Eliminate, uniformly, gas at all surface densities
- Star formation?
 - Unlikely to remove gas with low Σ_{HI}
- 'Violent' processes
 - Mergers
 - ▶ Feedback

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - ◆ This would reduce QHI
 - ◆ But would minimally change C_A
 - ▶ Need to remove 1/2 of the pools
 - ♦ While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR (next talk)
 - ◆ But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} removed?
 - Feedback?
 - Mergers?

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - ◆ This would reduce QHI
 - ◆ But would minimally change C_A
 - ▶ Need to remove 1/2 of the pools
 - → While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR (next talk)
 - ◆ But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} removed?
 - Feedback?
 - Mergers?

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - ◆ This would reduce QHI
 - ◆ But would minimally change C_A
 - ▶ Need to remove 1/2 of the pools
 - ♦ While leaving the other 1/2 alone
- What drives this process?
 - ▶ SF: Consistent with the SFR (next talk)
 - ◆ But why only 1/2 of the galaxies?
 - \bullet And how is the low Σ_{HI} removed?
 - Feedback?
 - Mergers?

- Evolution in HI 'disks'
 - Not sufficient to empty each pool by 50%
 - ◆ This would reduce QHI
 - ◆ But would minimally change C_A
 - ▶ Need to remove 1/2 of the pools
 - ♦ While leaving the other 1/2 alone
- What drives this process?
 - SF: Consistent with the SFR (next talk)
 - ◆ But why only 1/2 of the galaxies?
 - And how is the low Σ_{HI} removed?
 - Feedback?
 - Mergers?

Summary

- Galaxies (as a population) have the same distribution of $\Sigma_{\rm HI}$ at z=2 and 0
 - And probably at all times in between
 - ▶ Shape holds to z>4
- HI mass density and covering fraction decline by 50% in 1 Gyr from z=4 to 2
 - Mergers? Feedback?
- Swimming Pool Theory of GF
 - \rightarrow z=4 to 2
 - → 1/2 of the pools are completely emptied
 - ightharpoonup z=2 to today
 - ◆ The pools are filled and do not evolve

