Search for Spatially Extended Star Formation around Lyman Break Galaxies in the Hubble Ultra Deep Field

Marc Rafelski

Collaborators:
Art Wolfe
Hsiao-Wen Chen
Jeff Cooke
Taft Armandroff
Gregory Wirth

Wolfe & Chen 2006 Result

 The cumulative comoving star formation rate density of DLAs is lower than expected from the Kennicutt-Schmidt Law, suggesting reduced star formation efficiency in DLAs at z~3

A few possible explanations:

- At high z, critical surface density for disk instability is increased, therefore DLAs are stable against star formation
- Low molecular fraction in DLAs could contribute to lower SFR
- Lots of other possibilities, like the one you may be thinking of right now

Difficulties with explanations for DLAs

- Upper limits on the SFR density limits the rate of metal production in DLAs
- Cooling rates measured for DLAs are higher than heating rates due to the background (expect thermal balance: heating=cooling)
- Turbulence level of the DLA gas is to high

Caveat to the Wolfe & Chen 2006 Result

High surface brightness objects excluded from their search

image

masked image

smoothed & masked

- It is possible that in-situ star formation occurs in DLAs associated with high surface brightness objects
- Such star formation was not previously constrained

Another limit on the comoving star formation rate density of DLAs

• The aim of this work is to put a limit on the cumulative comoving star formation rate density around high surface brightness objects at a redshift of z~3

Figure by Wolfe & Chen 2006

Another limit on the comoving star formation rate density of DLAs

 The aim of this work is to put a limit on the cumulative comoving star formation rate density around high surface brightness objects at a redshift of z~3

High Surface
Brightness Objects
at z~3 are LBGs

Figure by Wolfe & Chen 2006

Properties of Lyman Break Galaxies (LBGs)

Compact Morphology

$$(D_{half-light} \sim 2-3 \text{ kpc})$$

Dust corrected Star
 Formation Rate (SFR)
 ~ 40 M_{sun}/yr

Image from Law et al. 2007

Models predict that accretion rate = gas consumption rate

Properties of Lyman Break Galaxies (LBGs)

Compact Morphology

$$(D_{half-light} \sim 2-3 \text{ kpc})$$

Dust corrected Star
 Formation Rate (SFR)
 ~ 40 M_{sun}/yr

Image from Law et al. 2007

- Models predict that accretion rate = gas consumption rate
 Where does all this gas to form stars come from?
- One possibility is Damped Lyman Alpha Systems (DLAs) (although stars generally form in molecular clouds)

A Potential Solution: LBGs in DLAs

Another possibility:

In situ star formation in DLAs associated with LBGs

We need a sample of z~3 LBGs in the HUDF

- Very few z~3 spectroscopic redshifts as most are faint
- Photometric Redshifts exist, although without the uband they don't sample the Lyman break at z~3, so their reliability is unclear

Image: Johan Fynbo

Solution: Ultra Deep u'-band image of UDF with Keck

Rafelski et al. submitted May 2009

The Keck Telescopes in Hawaii

I σ depth = 30.7 mag/arcsec² Detection limit =27.6 mag/arcsec² FWHM = 1.3 arcsec

The Hubble Ultra Deep Field

Beckwith et al. 2006

The Hubble Space Telescope

I σ V-band depth
= 30.2 mag/arcsec²

FWHM = 0.09 arcsec

10σ Point Source: ~29 mag

Notice the much higher resolution

UDF has a few different filters

Photometry through Template Fitting (TFIT)

Thursday, July 9, 2009

Color Selection to find z~3 LBGs

Photometric Redshifts reliable with u-band

#3021, type=4.00, bpz=0.36, odds=0.92

x1e-19

4000

6000

8000

10000

 $\lambda(A)$

12000

14000

0.10 $f_{\lambda}(ergs/cm^2/s/A)$ Without Probability 0.06 u-band 0.04 0.02 0.00 6000 8000 12000 Redshift $\lambda(A)$ #3021, type=4.67, bpz=2.97, odds=1.00 xle-19 0.09 0.08 0.07 $f_{\lambda}(ergs/cm^2/s/A)$ 0.06 With Probability 0.05 u-band 0.04 0.03 0.02

0.01

0.00

Redshift

Results from u-band data

- 413 LBGs identified in redshift interval $2.5 \lesssim z \lesssim 3.5$
- u-band affected photometric redshifts for about 50%
- Complete to V~27th magnitude
- Results agree well with available spectroscopic data

More details soon on astro-ph:
Deep Keck u'-band imaging of the
Hubble Ultra Deep Field: A catalog
of z ~ 3 Lyman Break Galaxies
Rafelski et al. submitted May 2009

Spatially extended low surface brightness emission and a limit on the comoving star formation rate density

- We have a sample of LBGs at $2.5 \lesssim z \lesssim 3.5$
- We go back to the V-band image in UDF
- Measure spatially extended low surface brightness emission around LBGs
- Determine comoving star formation rate density

Spatially extended Low Surface Brightness (LSB) Emission around LBGs

 The easiest way to look for LSB is by stacking objects to get the highest signal to noise possible

Spatially extended Low Surface Brightness (LSB) Emission around LBGs

- The easiest way to look for LSB is by stacking objects to get the highest signal to noise possible
- Isolated, compact, and symmetric objects

Spatially extended Low Surface Brightness (LSB) Emission around LBGs

- The easiest way to look for LSB is by stacking objects to get the highest signal to noise possible
- Isolated, compact, and symmetric objects

2.1 arcsec, ~16 kpc

Stack of 60 isolated, compact, symmetric z~3 LBGs in the V-band

Surface Brightness Profile of Stacked LBGs

Surface Brightness Profile of Stacked LBGs

Detection of in-situ star formation around high surface brightness objects

Detection of in-situ star formation around high surface brightness objects

Covering Fraction

Summary

- Aim was to test the caveat of in situ star formation in DLAs around high surface brightness objects
- Used new very deep u-band image to create first reliable sample of $2.5\lesssim z\lesssim 3.5$ LBGs in the Hubble Ultra Deep Field
- Detected spatially extended low surface brightness emission around LBGs
- Constrained the cumalative comoving star formation rate density of DLAs, if the gas around LBGs is DLA gas.
- The covering fraction of the low surface brightness emission is consistent with the reduced star formation efficiency measured in DLAs