## Star formation laws and their role in models of the formation and evolution of galaxies

Joop Schaye (Leiden)



## Outline

- 1. SF thresholds
- 2. SF laws: KS versus Schmidt and implementation
- 3. SF laws in cosmological simulations of galaxy formation

## Toomre (1964) criterion:

$$Q \equiv \frac{c_s \kappa}{\pi G \Sigma_g}$$

If Q < 1, neither pressure nor rotation can stabilize the disk. But: wavelength dependent.

K Epicycle frequency (from rotation curve)

 $C_{\rm s}$  Sound speed (from velocity dispersion, or not!)

 $\sum_{arrho}$  Surface density (atomic plus molecular)

# Can Toomre Q be used for local SF thresholds?

Assumption: disk is thin

- Disk scale height in outer disk  $\sim \lambda$  crit
- Dwars/irregulars/tidal tails not very disky

Assumption: Axisymmetric perturbations

SF is local → require truly local criterion

## Can Toomre Q be used for SF thresholds in outer disks?

Assumption: Q < 1 triggers instability small scales

- Q=1 implies instability for  $\lambda$  crit/2 > 1 kpc  $\rightarrow$  spiral arms rather than molecular clouds
- Q << 1 required for instability on scales <</li>
   kpc
- + Q << 1 implies  $\sigma$ << 8 km/s for observed  $\Sigma$  and  $\kappa$
- For  $\lambda \ll \lambda$  crit Toomre becomes Jeans  $\rightarrow$  rotation only important in center where  $\lambda$  crit is small (but center is no disk...)

## Thermogravitational Instability

- Outer disk physics simple:
  Warm phase only (UV radation!)
  No feedback from SF
- Cold phase is necessary for SF
- Phase transition is sharp
- $T_{cold} \sim T_{warm} / 100 \implies \sigma_{cold} \sim \sigma_{warm} / 10$

### The transition to the cold phase triggers gravitational instability

J5 (2004)

## What Sets the SF Threshold?





$$M_{200} = 10^{12} M_{\odot}, \quad \lambda = 0.05$$

$$M_{200} = 5 \times 10^{10} M_{\odot}, \quad \lambda = 0.1$$

$$c = 10$$
,  $j_d = m_d = 0.05$ 

JS (2004)

## Thermogravitational instability explains

- \* SF threshold ~ HI to H2 transition
  - Metallicity-dependent saturation of HI surface density (see JS 2001; absorption line measurements)
  - Superiority of molecular SF laws on small scales
- Value and constancy (apart from weak metallicity dependence) of critical surface density (also for dwarfs/irregulars/tidal arms, etc)
- Need to rescale critical Q depending on assumed velocity dispersion
- "Subcritical" disks
- Value and constancy of velocity dispersion in outer disks

### SF thresholds in simulations: From surface to volume densities

$$\Sigma_g = \rho_g L_J \propto \left(\frac{f_g}{f_{th}}\right)^{1/2} \rho_g^{1/2} T^{1/2}$$

$$T \sim 10^4 \text{ K}$$

At the threshold:  $f_g \sim 1$ 

$$f_{th} \sim 1$$

 $n_{\rm H,crit} \sim 10^{-1} {\rm cm}^{-3}$ 

## Outline

- 1. SF thresholds
- 2. SF laws: KS versus Schmidt and implementation
- 3. SF laws in cosmological simulations of galaxy formation

## Star formation laws

Empirical Kennicutt-Schmidt law:

Theoretically motivated Schmidt law:

#### Buts:

· C may depend on density

### Kennicutt-Schmidt and pressure laws

KS law 
$$\dot{\Sigma}_* \propto \Sigma_g^n$$

$$t_g = \frac{\Sigma_g}{\dot{\Sigma}_*}$$

$$t_g \propto \Sigma_g^{1-n}$$

Hydrostatic equilibrium  $\Sigma_g \propto \tilde{n}_g L_J \propto (\tilde{n}_g T_{eff})^{1/2} \propto P_{tot}^{1/2}$ 

$$t_g \propto P_{tot}^{(1-n)/2}$$

#### KS and Schmidt law correspondence

KS law: 
$$\dot{\Sigma}_* = A \left( \frac{\Sigma_g}{1 \,\mathrm{M}_\odot \,\mathrm{pc}^{-2}} \right)^n$$

#### Corresponding Schmidt law:

$$\frac{\dot{\rho}_*}{\rho_g} = A \left( 1 \,\mathrm{M}_{\odot} \,\mathrm{pc}^{-2} \right)^n \left( \frac{\gamma}{G} f_g P_{tot} \right)^{(n-1)/2} = \frac{\dot{m}_*}{m_g}$$

#### KS and Schmidt law correspondence

For a polytropic equation of state:

$$P_{tot} \propto 
ho^{\gamma_{eff}}$$

We have

$$n_{KS} = \frac{2(n_{Schmidt} - 1)}{\gamma_{eff}} + 1$$

The two power-law indices differ unless

$$n=1$$
  $\vee$   $\gamma_{eff}=2$ 

## Kennicutt-Schmidt law





## Kennicutt-Schmidt law





## Kennicutt-Schmidt law



#### Kennicutt-Schmidt law - SF threshold







$$\Sigma_{\rm c} = 7.3~{\rm M}_{\odot}{\rm pc}^{-2}$$

$$\Sigma_{
m c}=2.3~{
m M}_{\odot}{
m pc}^{-2}$$

$$\Sigma_{\rm c}=23~{
m M}_{\odot}{
m pc}^{-2}$$

#### Kennicutt-Schmidt law - SF threshold





JS & Dalla Vecchia (2008)

### Star formation laws

- Surface density, pressure and volume density SF laws can be related analytically
- Any input SF law can be implemented in simulations without tuning parameters, independent of the effective equation of state
  - → Bypass ignorance of SF, ideal for simulations that do not resolve the ISM
  - → Cannot learn about the physics behind the SF laws picked out by nature

## Outline

- 1. SF thresholds
- 2. SF laws: KS versus Schmidt and implementation
- 3. SF laws in cosmological simulations of galaxy formation

## Cosmological simulations: Varying the SF efficiency



## Cosmological simulations: Varying the SF law



# Can we understand galaxy formation without understanding SF?

· No, because galaxies consist of stars

#### But:

- To first approximation galaxy star formation rates determined by inflow and outflow rates (selfregulation)
- · Cannot understand galaxy formation without strong outflows that eject most of the baryons
  - → need more than cold flows and gravitational instability
  - > need monster in the bath tub/swimming pool