A HARP-B CO(3-2) map of M51

Investigating star formation processes on 600pc scales

Catherine Vlahakis (postdoc, Leiden Observatory)

- Paul van der Werf (Leiden Observatory)
- * Remo Tilanus (JAC, Hawaii)
- Frank Israel (Leiden Observatory)

Some aims:

- CO (3-2/1-0) line ratio and distribution
- ❖ CO(3-2) vs CO(1-0) as a tracer of molecular gas
- Star Formation Law on ~600pc scales using CO(3-2)

JCMT

Other Datasets Used

Analysis Method

matched psfs of each dataset to 14"

regridded to same 7.5" pixel grid

measurements in grid of 15" (600pc) regions

Chose regions >3 σ in BIMA/HARP data (shown)

❖ 198 15" (~600pc) regions

(not including small no. of CO or $H\alpha$ upper limits)

Results

Comparison of CO(3-2) & CO(1-0) distributions

Comparison of CO lines & SFR surface density

Star Formation Law

Correlation coef:

CO(3-2): 0.88

CO(1-0): 0.70

CO(3-2): 1.15

CO(1-0): 1.35

Kennicutt et al.

(2007): 1.37

CO line ratio (J=3-2/J=1-0)

Over 15" regions:

Median: 0.74

Over 7.5" pixels:

Median: 0.64

Highest line ratios in centre

General trend to lower ratios as go out into spiral arms

Instantaneous Gas Depletion Timescale

CO line ratio vs gas depletion timescale

CO line ratio vs gas depletion timescale

Summary

Comparison of the distributions of molecular gas as traced by CO(3-2) and CO(1-0)

Spatially resolved star formation law, on ~600 pc scales

- shallower slope for CO(3-2)
- tighter correlation for CO(3-2)

Other work not mentioned here includes e.g.

- gas-to-dust ratios (using SCUBA 850μm map)
- * radial profiling
- etc...

Vlahakis et al. (in prep)