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1) Euler grid modeling galactic disks
2) SPH modeling galactic disks
3) Euler grid modeling a molecular disk around an SMBH



Q1: What determines the global SFR?

A,: Gravitational, thermal, magneto-rotational or hydrodynamic
instabilities in a gas disk

»: Turbulence in molecular clouds

: Collisions between molecular clouds
: Molecular fraction in dense ISM

. Galactic rotation

. Galactic spiral

-1 H, chemistrory, FUV
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Q2: Then, which is the most important?
A: All.  So we need a 5-day workshop!

Today’talk = A simple theoretical picture on global SFR

Combination of these processes produces a
mess in a galactic disk ==> a robust statistical
feature in the ISM ==> KS-like SF law




Numerical Experiment of global
evolution of galactic disks using a
hydrodynamic code:
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e.g.
tracking stellar particle: HD.*.STAR
H2 formation/dissiociation: HD.*.H2
Spiral potential: HD.*.spiral pot
Xray heating: HD.*. Xray



3-D Hydrodynamics of a gas disk in a

spherical galactic potential
e Self-gravity of the gas
e A cooling function (10<T< 108 K) is Stellar/DM potential: fixed
assumed (solar)
Heating sources: uniform UV /

5122x64 grid point
Resolution: 5pc/gy
(also 10pc/grid)

Thin gas disk
~108-9 Msun
R=1.28 kpc
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3-D evolution of a gas
disk in 2.6x2.6 kpc

Low resolution run (10 pc)
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Evolution of density PDF in the unstable disk

High-density tail and low density part are coupled, and the
final PDF shows a smooth distribution.
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The density PDF is robust for energy

Positions of energy input are randomly selected.
SN rate= 1.5x10-° yr' kpc
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In more
massive
disks, the LN-
dispersion
Is larger.
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star formation model based on LN-PDF

ElImegreen (2002), KW & Norman (2007)

. ; : f. K holtz& McKee 05 f
Average density I & dispersion of LN | (r:nolercl:JurInarochcéudsC e

=fraction of high density clumps T = SFR 1
Log(Volume)

: Dense gas involved in
: star formation

LN

Average density

Log(densfty_)— _ T
threshold density for

2 local SF
_ o /2
<,0> v — Po€ / e.g. n=103°cm=




SFR is scaled to gas density averaged
on a kpC_Scale KW&Norman07

If stars are formed in a free fall time above
the threshold density,
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1) For larger threshold, SFR is more
sensitive for average gas density.

Threshold density=106,105,104,103cm-3
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2) SFR drops sharply for lower
density. (does NOT mean Q >1,
but a fraction of star-forming gas is
smaller. )
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How does PDF change depending on total gas
mass (average density)?

e Suppose the density distribution is represented by
LN-PDF, the PDF responds to increasing the total
gas mass by two ways:

(1) Characteristic density is const.,  (2) Dispersion is constant, &
& dispersion increases. Characteristic density increases.
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‘Parametertofitobserved SFR:  po €. pPe ‘




Comparison with observed SFR
In starburst galaxies, the characteristic density
(20) should be larger, for a given efficiency
and threshold density of local star formation.

efficiency+0.01

Normal
p. =10° cm™

Star formation rate/area

3

Gas surface density
Observed data: Komugi + (2005) based on CO survey in Nobeyama
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N-body/SPH simulations (ASURA)

Saitoh et al. (2008) PASJ 60, 667
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. Net evolution of density is

~ 5 x slower than free fall time on

“‘Random walk” in density




Density and temperature distribution Mg, = 1.3x10” M,

around a SMBH Mgas = 6x10° Mg,
Wada,Papadopoulos, Spaans (2009) arXiv:0906.5444
HD*.H2.SMBH.SNe

Resolution: 0.125 pc
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Phase-diagram and PDF in a galactic
central region
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Density&H, PDF in a galactic central region
Wada.FTaoadoooqus, Spaans (2009) arXiv:0906.5444
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summary

¢ The inhomogeneous ISM in globally
stable disks can be characterized by a
Log-Normal like density PDF

— Global SFR is controlled by a mass fraction in
high density regions, which is NOT
independent of lower density regions.

— Time-scale of global SF is not determined
only by the free fall time of high density gas,
but also by evolutional time scale toward high

density regions.

— Mass ‘flow’ is slow in a statistical sense due i
to diffusion-like evolution in a density space. iy
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e Non-LN PDF or multi-component PDF
would be also the case in realistic

Lo

situations.



