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CHAPTER 1

GRBS: WHAT OBSERVATIONS TELL US

1.1 GRBs History and Phenomenology

GRBs are flashes of vy-rays, lasting about 1 — 100 seconds. They were discovered in the late *60s by the VELA
military satellites, shown in Fig. 1.1, launched by the US and aimed at spying russian nuclear activity. Fig. 1.1
shows the first y-ray light curve ever measured, relative to the events GRB 670702 (July 2nd 1967).
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Figure 1.1: Left panel: one of the VELA satellites before launching. Right panel: v-ray light curve of the first
GRB event on July 2nd 1967.

Their detection was made public only in 1973, and by that time about 16 events had been recorded. Several
models were put forward to explain these events, from nuclear flashes on NS and WD surfaces, to primordial BHs
evaporation, but the paucity of data did not allow scientists to set meaningful constraints, in particular, without a
determination of the distance, it was not possible to establish the energetics of these events. The science of GRBs
had a major progress in 1991 thanks to the BATSE instrument on bord of the CGRO, Fig. 1.2, which operated until
2000. For the first time it was possible to measure with millisecond accuracy the light-curve of GRBs, to get a rough
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2 GRBS: WHAT OBSERVATIONS TELL US

estimate of their spectrum, and to locate their position. In the period from 1991 to 2000 BATSE measured about
8000 events, one every few days, and the first sky map, Fig. 1.2, immediately ruled out a galactic population. The
events were compatible with an isotropic distribution, at all energies, showing no sign of either a disk component,
or an overdensity in the direction of the Virgo Cluster. Of all the various models, only those invoking sources at
cosmological distances, or in the solar neighborhood (at distance smaller than the disk scale-high ~ 100pc) were
left to survive.
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Figure 1.2: Left panel: the BATSE instruments (marked by the orange circles) on board of the CGRO. Right panel:
the sky distribution of 2704 BATSE GRBs color-coded for their fluence.

Looking at BATSE light-curves, Fig. 1.3, it is immediately evident that the temporal evolution of the ~y-ray lumi-
nosity can be extremely diverse: There are events with smooth evolution, others showing large variability up to
millisecond timescales; some events are characterized by multiple peaks or flares; some have a very rapid rise time,
others quite shallow.
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Figure 1.3: Light curves of various BATSE GRBs.

However thanks to the large number of events recorded by BATSE, it was possible to provide the first character-
ization of GRBs, based on two parameters: the so called hardness ratio (HR), simply defined as the ratio of the
energy detected in two different energy channels of the BATSE instrument, and the T, time defined as time during
which 90% of the GRB energy was detected. Fig. 1.4 shows the distribution of Tyy. The distribution is bimodal
and reveals the presence of two populations, one of long events (LongGRBs) with typical Ty = 2s, and one of

~
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short events (ShortGRBs) with typical Tyg < 2s. Interestingly, these two populations, are distinct also in terms

~

of the hardness ratio. The so called hardness-duration diagram in Fig. 1.4, shows that LongGRBs are softer and
ShortGRBs are harder. About one fourth of all GRBs detected by BATSE is a Short one.
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Figure 1.4: Left panel: the bimodal distribution of the Ty duration for 2041 GRBs in the BATSE GRBs catalogue.
Superimposed are the decomposition of the distribution into two lognormal distributions (thin red and green solid
lines) and their sum (thick solid blue line). Right panel: the duration Ty and the hardness ratio of 2000 GRBs
from the BATSE catalog (grey dots), together with few Swift and HETE2 events (blue stars and crosses). Black
squares mark the average logarithmic location of the ShortGRBs and LongGRBs population.

BATSE provided also the first determination of the time integrated «y-ray spectrum, of the prompt emission. Unlike
their light curves, the time-integrated spectra of GRBs do not show the same extent of diversity. The majority
of the BATSE GRB prompt emission spectra in the keV-MeV energy range were adequately fit with an empirical
function called the Band function, Fig. 1.5, which consists of two power laws, smoothly connected together at the
break energy Fpcax, Where the flux peaks. Typical values of power-law index for the low energy photon spectrum
a, range from ~ —2 to ~ 0. Typical values of power-law index for the high energy photon spectrum §, range
from ~ —4.5 to ~ —1.5 (note that values > —2 imply the presence of some high-energy cutoff, otherwise the
total energy would diverge). Ejcak has a quite narrow range from 100keV to 1MeV, with an average ~ 300keV,
Fig. 1.6.
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Figure 1.5: Left panel: count spectrum of GRB911127 with a Band function fit. Right panel: photon spectrum of
GRB990123.
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Figure 1.6: Distribution of power-law index for the low energy photon spectrum « (left), for the high energy
photon spectrum 3 (right), and break energy E,qai (center), for GRBs in the BATSE catalogues, fitted with the
Band function.

Unfortunately BATSE pointing accuracy ~ 4° was not high enough to allow possible follow-up form ground
based telescopes in order to identify possible optical counterparts. It was only with the launch of the Italian-Dutch
satellite BeppoSAX, in 1996, that the identification of counterparts became possible. BeppoSAX was specifically
design to allow rapid X-ray observation following a ~-ray trigger. Given the highest resolution of X-ray optics, it
was possible to provide ground based facilities with high accuracy positions. On February 28th 1997 the first X-
ray and optical afterglow of a GRB was detected. An optical galaxy was found in coincidence with the position of
GRB 970228, Fig. 1.7, and the identification of absorption lines in its spectrum, allowed the first determination of
a GRB red-shift. GRB 970228 was located at Z = 0.695. This firmly established GRBs as cosmological sources.
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Figure 1.7: Left panel: HST image of the host galaxy of GRB 970228 together with the location of the optical
afterglow. Right panel: optical spectrum of the host galaxy. Marked are the identified lines of [O II], [O III] and
[Ne III] with their rest frame wavelength.

We now know that the majority of optically identified GRB host galaxies (almost all of them for LongGRBs) have
redshift between Z = 4 and Z = 1, with a peak at Z = 2, as shown in Fig. 1.8. Noteworthy a few GRBs
are detected at Z > 8 making them among the farthest objects known. These redshifts imply that the isotropic
luminosity (the luminosity of an equivalent isotropic source) could be as high as 10°2 erg s—*, corresponding to a
total isotropic energy emitted in y-ray up to 10°* erg. In general it is found that LGRBs and SGRBs have similar
luminosities, but LGRB are about two orders of magnitude more energetic. Moreover short GRBs are usually

found at smaller redshifts, Fig. 1.8.
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Figure 1.8: Left panel: distribution of the redshift of host galaxies of selected long GRBs. Right panel: redshift
distribution for Long (light grey) and Short (dark grey) GRBs.

In 1998 for the first time, it was found an optical counterpart of a GRB in the SN 1998bw, Fig. 1.9. GRB 980425
is a Long one, and SN 1998bw is a type Ic supernova. Type Ic SNe are core collapse SNe that show no H and
He lines, and are usually associated to the death of massive stars M > 30M, that have lost their outer H and He
envelope via powerful stellar winds (other possibilities include lower massive stars in a binary system that have
lost their outer layers due to mass transfer in a common envelope phase, or convective star undergoing chemical
mixing). Today we know about 20 GRB-SN firm associations (in several GRBs late time optical bump in the
light-curve are often interpreted as the evidence of an underlying SN).

Figure 1.9: Left panel: DSS sky map if the region of GRB 980425. Dashed circles locate the position of two
BeppoSAX sources detected in coincidence with the GRB. The arrow marks the host galaxy of SN 1998bw. Right
panel: HST image of the host galaxy. The insert shows that the location where SN 1998bw exploded (see image
below it) coincides with a star forming region.

The GRB-SN association was confirmed in 2003 by GBR 030329 associated with SN2003h, where it was possible
to follow the evolution of the spectrum of the GRB into the spectrum of the SN: at early time the optical spectrum
is dominated by the non-termal emission form the GRB afterglow, which fades out progressively letting the SN
spectrum emerge at late time a shown Fig. 1.10. Today, apart from few rare events, where no SN was detected
even in deep searches, we can say that all LGRB are possibly associated with SNe. In particular it is found that
Long GRBs are associated to Type Ic supernovae, (on average there is one GRB every 100 SNe Ic), and that among
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type Ic SNe, GRBs are associated with the ones having the highest velocity ejecta, and that are usually referred as
Hypernovae.
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Figure 1.10: Left panel: evolution of the optical spectrum of GRB 030329. During a period of 8 days it is
possible to see that the spectrum of the optical afterglow changes from a simple power-law, to a more structured
shape. Middle panel: optical residuals with respect to a pure power-law of the spectrum of GRB 030329 at 8 days,
compared with optical spectra of the typical Type Ic supernova SN 1998bw at similar times. Right panel: afterglow
evolution of GRB 120729A in various bands. The optical-IR bump observed at ~ 10 days is interpreted as the
emerging light from the associated SN.

Studies of X-ray and optical afterglows, enabled us to characterize the LGRBa and SGRB populations better than
what could be simply done from the y-ray prompt emission alone. Later, afterglows were discovered also in
radio, hundreds of days after the prompt emission. It was found that SGRBs and LGRBs trace two distinct stellar
populations. SGRBs are found in more massive galaxies including large spirals (Milkyway type) and elliptical,
while LGRBs happen preferentially in smaller irregular blue galaxies with mass < 10'°M, Fig. 1.11. SGRBs
select in general for older stellar populations, while LGRBs trace younger stars (they tend to be associated with
star forming systems, and in general their redshift distribution tends to follow the high-mass star formation rate).
They also differ in terms of their typical location within the host galaxy: SGRBs tend to be found at larger offset
from the center than LGRBs. Moreover all SN-GRBs association are with Long one.
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Figure 1.11: Left and Middle panels: stellar mass distribution and stellar age distribution of the host galaxies for
Long and Short GRBs. Right panel: cumulative distribution of the offset of Long and Short GRBs with respect to
the center of the galaxy.
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This suggested that LBRGs should be associated with the death of massive stars, and might constitute the high
energy tail of regular CC SNe. SGRBs are instead associated to an older population, and their canonical model
invokes the coalescence of NS-NS or NS-BH binaries.

One of the most interesting phenomenology observed in the afterglow of GRBs was the presence of late time jet-
breaks. Jet-breaks are achromatic changes in the light curve (a steepening), observed typically a few days after
prompt emission, and that are interpreted as an evidence for the collimation of a decelerating outflow (see Sect. ??).
In Fig. 1.12, we show a typical example of jet-break, together with one of the fist study on the distribution of the
jet-break time.
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Figure 1.12: Left panel: example of achromatic jet-break; evolution of the afterglow light-curve in four different
bands. Right panel distribution of observed jet breaks in Long-GRBs, as a function of time since burst.

In 2004 with the launch of the X-ray/UV satellite Swift, it became possible to conduct systematic studies of the
afterglows of GRBs. The most interesting phenomenology discovered with Swift was the so called late time activity
present in the afterglow, Fig. 1.13. By late time activity, we mean evidence in the afterglow, of some kinds of late
time energy injection, either in the form of plateaus, or in the form of flares/rebrightenings. These are also observed
in Short GRBs, about 100-1000 second after the prompt emission. Such energy injection demanded a long lasting
engine, setting strong constraints on the possible mechanism at the origin of GRBs.
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Figure 1.13: Examples of late time activity in the form of plateaus in the light curve of the X-ray afterglow of
Long GRBs.
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1.1.1 Canonical Models for GRBs Engines

The key observations that constrain the possible engines for Long and Short GRBs, are the short time scale vari-
ability and the large isotropic energy. The observed millisecond variability implies central engines with typical
sizes of ~ 10 km. The large isotropic energy, comparable with the rest mass of a 1M object, corresponding to
typical beaming corrected energies ~ 1052 erg, implies a mechanism with very large efficiency. Moreover the
possible engine must be compatible with the typical stellar population characteristic of the GRB environment.

There are two canonical models for the engine of Long GRBs. The collapsar model is based on the idea that the
core of massive stars (recall that Long GRBs are associated to the death of massive stars, M > 30M), collapses
directly to Black Hole. Matter of the outer layers then falls onto the BH: while along the polar axis matter can
be directly accreted, leaving and evacuated funnel, along the equator, centrifugal support leads to the formation
of an accretion disk. It is the accretion of the outer layer that powers the GRBs, leading to a jet that propagates
along the evacuated polar funnel. In the collapsar model, the mass accretion rate, which is dictated by the structure
of the surrounding star, regulates the energy injection. The origin of the relativistic outflow is less clear: it could
originate from a disk wind, from neutrino-antineutrino annihilation in the disk corona, or from the Bladford-
Znajeck mechanism tied to the rotation of the BH itself. The main problems of the collapsar model are that: it does
not explain why the supernova looks like any other type Ic SN, or what drives the SN (the original collapsar model
predicted SN-less GRBs), it does not put tight constraints on the energetics, it requires large angular momentum in
the BH, it is not clear what powers late activity.

More recently an alternative model, the millisecond magnetar model, has been put forward, to address some of
those issues. The idea behind the millisecond-magnetar model is that the core of a massive star does not collapse
directly to BH, but forms a rapidly rotating NS with magnetar like magnetic field. A simple estimate using the
dipole spin-down formula, suggests that a millisecond rotator with a magnetic field ~ 10'°G, could lose ~ 10°2
erg of energy in ~ 100s, enough to power a Long GRB. The formation of a NS is more in line with standard models
for SNe, and fits naturally in the GRB-SN connection. The angular momentum requirements are less severe than for
BHs, and the spin-down evolution sets strong constraints on the energetics, that can be tested. The main problem
with this model is that it fails to predict very Long GRBs (99 > 300s), or GRBs with major rebrigthnings. On the
other hand it naturally provides a long lasting engine that can power the late activity.

For Short GRBs the canonical model invokes the merger of a binary NS. It was originally proposed that such
mergers could lead to the formation of a rapidly rotating BH. During the merger about 10~3 My, are left over
to form a disk that can accrete, on typical timescales ~ 1s, powering a Short GRBs. However the presence of
late activity and energy injection (in Short GRBs the energy necessary for late activity is comparable to the one
powering the prompt phase), typically after 100s, is vey hard to justify. For this reason it was poposed that instead
of directly collapsing to BH the merger could lead to a rapidly rotating long-live (supra-massive) NS. If this NS has
magnetar like magnetic fields than the millisecond magnetar model could apply. The presence of a millisecond-
magnetar could naturally explain the late-activity.

1.2 GRBs are relativistic

There are several arguments based on simple observations of the temporal evolution and spectral properties of the
prompt y-ray emission of GRBs, and their late Radio behavior, that immediately allow one to conclude that GRBs
must be associated to relativistically expanding systems.
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1.2.1 Cavallo Rees Relation

There is a very important limit that can be placed on the ratio of the luminosity and typical timescale of an astro-
physical source. For an astrophysical source of size R with luminosity L lasting for a time At the total energy
must be LAt, and it will be related to the mass contained in the source by:

4
LAt = n§R3nmp02 (1.1)

where n is the baryonic density, m,, the proton mass, and 1 < 1 is the efficiency of matter to energy conversion.
For an instantaneous injection (the duration of the spike ~ 1s is much longer than the typical timescales at the base
of the NS magnetosphere ~ R/c ~ 1073 s) the duration of the source is related to the time it takes for a photon to
escape.

M>§u+ﬁ> (12)

where R/c is the light crossing time and 77 the optical depth. The correction comes from the fact that for 7p > 1
photons diffuse with a random walk and the escape time increases accordingly. The opacity for a fully ionized
system (Epeax ~ 300 keV) is just the Thompson opacity due to electrons 77 = ornkR, where we have assumed
one electron per baryon (the case of H). Combining Eq. 1.1 and 1.2 to simplify the radius, one has:

3 L1 2 4 4 4
Ars 2 or Ltm) P AL N L (1.3)
drmpctn T 3 or (1+77)? 3 or
given that the maximum is for 7 = 1. One then has:
L o) 1012erg 52 (1.4)
At '

This in known as Cavallo-Rees limit, and it does not depend on any property of the source. In Long GRBs The
typical isotropic energy FEi, is of the order of 10°% erg, while the typical duration is At ~ 100s, leading to

£ ~ 10% erg s72, about 7 orders of magnitude higher than the above limit.

The Cavallo-Rees limit assumes a source that does not expand at relativistic speeds, such that the light crossing
time is strictly related to the observed duration. For a system expanding at the speed of light this is not so. Let us
assume that the first photon is emitted when the typical size of the system is R;, and the last photon is emitted after
a time At when the size of the system is ;. Now if the system expands at a high Lorentz factor , then the
velocityisv ~1—1/ 2+2, and Ry = R; + vAtye. As a consequent the difference in the arrival time of the two
photons will be:

Rf - Ri o Attrue

Atobs = Attrue - )

- > (1.5)

on the other hand the due to doppler boosting the observed luminosity will be a factor ~ times higher than the
intrinsic one (the energy of each photon is ~y times higher). So the correct relation in terms of observed quantities
will be:

Lobs 3 Ltrue 3 D) 92
— <2 x 10%“erg s (1.6)
Atobs 7 Attruc m &

that can be satisfied as long as v 2 100.
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1.2.2 Compactness

GRBs show a spectrum where the majority of photons have typical energies ~ Epc. ~ 300keV. This implies that,
taken any two photons, a large fraction of them will satisfy the relation v/h2v1v5 > mec?, such that in principle
they can interact leading to pair-production. In particular it is often observed an high-energy power-law tails of
photons extending all the way to GeV energies, as shown in Fig. 1.14. These photons can in principle pair produce
over the bulk of the other photons (all the way down to ~ 1keV). Let us compute the pair-creation optical depth for
those photons. For a non relativistic system the photon number density if just the total radiated energy divided by
the source volume and typical photon energy. For photons at 1GeV interacting with the bulk photons with typical
energy ~ Epeax the value of \/h2v1vs ~ 10m.c?, which implies a typical cross section for pair creation ~ 107!
times the Thompson cross section o, as shown in Fig. 2.1. Then one finds:

Eiso At -2
Ty 2 0.1077 (Ek) R 2 =~ 10*2 (18) (1.7
pea.

where we have taken Ei,, ~ 10°3erg, and R = cAt. This is so much larger than unity that there should be no
photon at those energies, while we do see them, and we see also a non-thermal distribution.
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Figure 1.14: Left panel: events count for high energy photons above 0.1GeV, detected by Fermi-LAT, in the first
few seconds of GRB 081024B. Right panel: reconstructed spectrum of GRB 081024B up to a few GeV (see the
last LAT point).

However for a source expanding with a high Lorentz factor the relation between the observed duration and the true
source size is Ryue = 272¢cAtons. Moreover photons having an observed energy E,s will have an energy in the
reference frame of the system where they pair produce ~ Fop,s/7. The same will hold for the bulk of photons whose
energy will be Epeak /7. So a GeV photon (produced as a F; = v~ 'GeV in the reference frame of the expanding
system) will only be able to interact with other high energy photons (E; > m2c*/E; ~ ~vkeV > Epeak/7) in
the reference frame of the expanding system. A GeV photon will interact with other y2keV photons. So only the
v?keV photon density will matter:

2kev 1-8 2 1-8
Nhu>'y2keV ~ Niot <’}/E ) = Niot (7) (1.8)
peak

where 3 ~ 2.2 is the high energy photon index. Hence the correct estimate for the GeV opacity wil be:

E 1012/ Atgpe\ 2
~ 0.1 — 0 VRZ o~ 003 = > 102 1.9

in order for the system to be optically thin up to GeV.
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1.2.3 Radio Scintillation

It is well known that light propagation through a turbulent medium, with varying refractive index, gives rise to
scintillation: rapid variations in the intensity of a point source. Scintillation is observed in Radio for both galactic
(pulsars) and extragalactic (AGNs) sources, and is related to the fluctuations in the electron density of the ISM. For
a light ray, of wave number k& = 27/ propagating in a medium with a density of free electron n. the refractive
index is given by:
NeTo
2

where 7, = e2/(m.c?) is the classical electron radius. Light propagating through a clump of side dx with a
fluctuation in electron density dn., will accumulate a phase lag with respect to a neighboring average region,
corresponding to a difference in optical path:

8l = 6x0n = Awk ™ 2r,0n.0x (1.11)

n=1—4dn (1.10)

As the light propagates through a turbulent layer of size D it will encounter ~ D /§x clumps. The contribution to
the various clumps will add incoherently such that the effect of the turbulent layer will be to produce a typical total
difference in optical path:

D\ -2 1/2

0lior = 0xom o = 4nk™*r,0n.(Ddx) (1.12)
x

Now if the electron density is distributed according to a power-law, like for example in the case of Kolmogorov

turbulence, then:

on?(k) o C2k~1 = n2(dz) = C2k~9dk = C26277! (1.13)
1/6x
where the integral is done on all the contributions of the fluctuations at scales smaller than §z (larger scales do not
contribute to phase differences). For Kolmogorov turbulence ¢ = 5/3. Then one finds:

Slioy = 4k~ 21,000 (Dx)'/? = dmk=2r, DY 2529/%C,, (1.14)

Immagine now that the turbulence is confined into a thin screen at distance z;. from the observer. On such a screen
the size of a coherent region (a region where the wave front phase difference is smaller than the wavelength itself,
such that interference can take place) will be given by the condition:

6l k™Y = xS (167%r2C2DE2)73/5 = (4r2C2DA2)73/0 (1.15)

Such coherent size, corresponds to the angular size of a point like source (the minimal resolvable size, given that
the turbulent screen behaves a an interferometer that introduces phase shift among neighboring elements). Above
this distance different part of the screen will only interfere incoherently. Below this distance interference will be
coherent, and a diffraction pattern will be generated (as in the case of an interferometer). As the observer moves
across this diffraction pattern, strong scintillation will arise. Obviously, scintillation can only take place if the
source angular size is smaller than the angular size corresponding to a coherent patch:

Ole 271,.2y2\—3/5_—1 A 6/5 Zsc -
0 = o < (4C2Dr2)2)=3/5, 1 ~ 2.25 <3cm) <1k‘p‘c> L arcsec (1.16)
where we have taken Radio wavelength, we have chosen a typical distance of the turbulent layer of the order of the

size of the galactic disk, and we have taken C2D ~ 10~3-°m~2%/3kpc as derived from pulsar scintillation.

For a cosmological source located at a few Gpc from us, such angular size corresponds to a real size ~ 107 cm.
Larger sources will not experience strong scintillation.

As shown in Fig. 1.15, strong scintillation in radio is observer in the first 30-50 days after the burst, with radio
luminosity setting to a less variable trend at later times. This means that in a timescale of the order of 30 days
~ 3 x 100 seconds, the source expand to a size > 107 cm, implying expansion velocity close to the speed of light.
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Figure 1.15: Left panel: radio flux density of GRB 070125. Right panel: radio flux density of GRB 970508.

1.3 GRBs are collimated

Given that GRBs are highly relativistic outflows, only a small portion of their emitting surface will be observable.
Assuming a radial expansion with a Lorentz factor -, each element of the emitting surface will produce radiation
that is beamed into a cone of opening angle 1/+. If the observer direction lays outside this cone, then photons
will not be detected. As a result only a small portion of the emitting surface, an area of opening angle 1/~ around
the direction of the observer, will be visible. As the outflow expands into the surrounding medium, matter will
be collected in front of it, such that it will slow down. Before the outflow becomes non-relativistic (which, as
we saw, happens at about 30 days after the prompt emission), the evolution of the front can be described by the
Blandford-McKee solution:

17E 1/2
'y=< ! ) t=3/2 (1.17)
8mpo

Recalling that for a moving source the true time is related to the observed time by t = 22,5, we find the relation:

17ENY® 4
=(—=) ¢ 1.18
7 <87rpo) obs (1.18)

As a consequence as the flow slows-down a progressively larger fraction of the emitting surface will be visible. Let
us assume that the intrinsic surface luminosity goes like £~ then the observed luminosity once integrated over the

observable surface will go like: t~*R(t)/v? = t*7% t2-ol2,

obs

However in the late afterglow, at a few days after prompt emission, it is often observed an achromatic change in
the temporal evolution of the observed luminosity (a change in the time-slope). Being achromatic, it cannot be due
to either cooling, or a change in the acceleration properties (for example efficiency), or the opacity of the emitting
surface, because such processes are usually dependent on the energy of the emitting particles, and they tend to
show as chromatic effects.

Such achromatic changes are usually referred as jet-breaks because they are commonly interpreted as geometric
effects related to the finite extent of the emitting surface. If the total emitting surface has a typical angular extent
Bict, as it is the case for a jet, then there will be two different regimes if either 1/~ < ;e when only a portion of the
surface will be visible (a portion that increases as the flow slows-down), or 1/ > ;e when the entire surface will



RADIO CALORIMETRY OF GRBS IN THE LATE SEDOV PHASE 13

be visible (and further slowing-down will have no effect). In this latter case the observed luminosity will go like
tTOR(t)?050 = 117 tgga)m, decreasing much faster. A typical example of jet break is shown in Fig. 1.12
(note that the slope change is just 1 and not 1.5, probably because the expansion is not in a uniform medium),
together with the typical jet-break time. Now once the ratio F/n of the energy of the explosion over the ambient
density is known (can be derived from the later Sedov calorimetry, see Sect. 1.4), from the observed jet-break time
it is possible to infer the jet opening angle:

B\ 3 /9. \3/3
tip ~ A(1 + 2) ( n53) (OJ;) days (1.19)

where Fj3 is the isotropic energy in units of 10°3erg, n,, is the ambient density in units cm~2, and z is the redshift.
In Fig. 1.16 we show the statistics of jet opening angles.

6 sy —

Number of Counts (N)

[~
T

Opening Angle (deg) 6, (deg)

Figure 1.16: Typical jet opening angle derived from jet-breaks. The various color-styles refer to GRB samples
with different selection criteria. The distribution peaks at a few degrees.

1.4 Radio Calorimetry of GRBs in the late Sedov Phase

Once the expansion speed of the forward shock becomes non relativistic v ~ 1, beaming effects and Doppler
boosting become negligible, and one can use simple non-relativistic derivations. The only effect that still needs
to be taken into account is the cosmological redshift. This implies that the radiation from the entire blast wave is
visible. We are thus in a good position to estimate its total energetics. We are going here to show how the late radio
spectral evolution can be used to constrain the total energetics of the explosion.

1.4.1 Synchrotron Emissivity and Absorption Coefficient for a Power-law Distribution

Let us assume that the emitting particles can be described as a power-law in energy beginning at a minimum
Lorentz factor 7,, to v — 0o: N(v) = Ny (v/¥m)P. The normalization constant is related to the particle density

as:
oo -p [e’e) —p Nm - -1
n= / N (’Y> d'}/ = Nm'}/m/ (V) dl = . = Np= u (1.20)
Tm 1 Tm Tm p—= 1 Tm

m



14 GRBS: WHAT OBSERVATIONS TELL US

For synchrotron emission one can define the following quantity: the characteristic frequency v, of a particle with
Lorentz factor y; the characteristic frequency v, of particles with v = ~,,; the synchrotron power per unit fre-
quency P(v,~) emitted by a single electron with Lorentz factor v and mediated over pitch angle:

B B
ve=7" (o), Vi = (o (1.21)
2TmecC 2TmecC
e3B v e3B v oy
P(U7 ’y) = meczF |:1/(,:| = m()CQF |:1/,,n"}/2:| (]22)

It is found that the average over pitch angle changes marginally the value of F' with respect to the orthogonal case

We introduce the following auxiliary function:

Fylz] = / ) Flyly*="72dy (1.23)
0

It is now possible to compute the synchrotron emissivity for unit volume, recalling that 2dy = —y3d(1/~?):

: > N A
o [ P £ [ (2) [ a2
" mec Tm Um 7Y Tm

_é B (%)2 [V vm} =
- m m
CZ 2 Um 2’7m 2

B Vo Y Y] g
- szcz 555 YmiV T A2

T
—p) (p—3)

LB () Lﬁ Top[ram] (2 om
2m202 m N Vin, Vm V2 Um V2 U V2
e3B e’B (p—1) (1-p) v
szcz'ym m )7m262num 2 p 2 Fy|—

e3B

_(p—l) p—1 (p R (1-p)/2
— g Mm m2c? 27rm c Fs Vm (1:24)

where we have used the fact that for any function G:

0o 2 2 V/Vm
—/ G {”%;] d(V%;> :/ Glyldy (1.25)
m Um 7Y Um 7Y o
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Similarly we can compute the absorption coefficient:

2 P ) 2 SB —(p+1) 2
(p+ / 2 v)d (p+2)c e Nm(v) F[V’vﬂd’v
MeC

87r1/2

_(r+2) in
82 m202 2
(p+2) / vm
16712 m202
(p—2)

(p+2) e 7’”/2 v 2\ v 2] (v
T 16m? m202 7? F Vm 72 d Vm 72

~ (p+2) B v\ ¥ v (p—|—2)( 1) B n 9 _ v
- N, [ — F oy, P2yt /2, |
1672 m2c? U Um 167 m2c? ’ymy v o
(p+2)(p—-1) 1 ot2p |V
= Fy | — 1.26
167 m202 27rmg 2 U (1.26)
Now recalling that for z < 1 one has F[z] oc /3 and that
/ Flylydy = Clu] = (1.27)
0
one can set
z (Bu+4)/3 f <1
/ Flylytdy ={ " Clul for z< (1.28)
0 Clp] for z>1
Then:
1
(1—p) (1—p) v v 3 (p—3)
2 v v Z [vm (ﬁ C[ 5 ] for v<u,
Jv & <) Fy L} = (1/> / Fly] P32 dy = (p)
" m m 0 - C [(p;g)} for v>u,
(1.29)
(p+4) _ bty (L —3 C (p—2) f <
3 5 e . or v <,
Um VUm Um 0 Vy 2 (p;2)1| fOI' v > Ui
(1.30)

1.4.2 Synchrotron Spectrum of a Thin Shell

At this point let us assume that the emission comes from a thin shell of radius R and thickness § < R, and that the
emissivity and absorption coefficient are constant in the shell. For a line of sight intercepting the shell at a distance
r from the center the total intensity will be:

25/ sin 6 1—e ™ 20 200, R
/ eovrdr = 5, L)y = 2w 200y (1.31)
0 Qay sin 6 R2 —r2
Now the average optical depth will be:

2 (" 26a,R
R2 0 /R2 — 2

T, =

rdr = 46« (1.32)
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Hence:
5
- v\ o] e=2)
%—(p+2)(p_1)”5<633)< eb ) C () (Sg[ |t v (1.33)
v 5 2.2 _ .
T m Ameet/ A 2mmee (£) “ol22] for vzu,

The frequency v, where 7,, = 1 is the synchrotron self-absorption frequency. The total intensity will be:
1

(- U—e™)p-bn (£8), () c[252] for v

J, = 4rR*6~———2Lj, = 2rR*} = 53 (1-p)
Ty Ty mgc v 2 (p—3)
Tm (Z) C [pT] for v>u,
(1.34)
Now if v, < v, then:
V2 for v<u,
J, o { /3 for v, <v < up (1.35)
v=P)/2 for v >y,
If instead v, > v,, then:
V2 for v <uvy,
J, oc ¢ V52 for v, <v <y, (1.36)

vA=P)/2 for v >,

1.4.3 Sedov evolution

Once the expansion speed drops below the speed of light the evolution of the system follows the standard Sedov
solution:

1/5 1/5
R(t) = (f) t2/5, R(t) = %@ = % (f) t=3/5 (1.37)

where E is the energy of the explosion, and p is the ambient density (a different scaling applies if instad of a
uniform ISM one consider a wind with p oc 7~2). Give the self-similarity of the Sedov solution, we can assume
that the magnetic energy density downstream of the shock is a fixed fraction of the thermal pressure. Then:

B? .

o = egpR*P(r/R(t)) = B (t/t,)"3/° (1.38)
U

where P(r/R(t)) describes the profile of the thermal pressure with radius and ranges from 3/4 at the forward

shock in R(t) to 1/4 at the center, and eg < 1 tells us how magnetized the system is. Analogously we can assume

that the energy density of the non-thermal emitting electrons is a constant fraction of the total thermal energy.

Assuming a power-law distribution with a minimum energy Yminm.c?, and power la index p > 2 one has:

& Npmec®

N (v/Ymin) Pymecidy = eepR*P(r/R(t)) = pj%min = epR?P(r/R(t)). (1.39)
52

p—1 pR
m’)/minn = EeWP(T/R(t)) (140)

Ymin

=

where, we made use of Eq. 1.20, and ¢, < 1 tells us what fraction of the plasma energy is carried by the non-
thermal emitting particles. It is reasonable to assume that the characteristic energy of the radiating particles scales
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as the characteristic energy of the incoming matter, and that their density scales as the incoming ambient density
n x p, then:

Ymin X R = Ymin X (t/to)_ﬁ/‘r’7 = VUmin X (t/to)_3 (1.41)

Hence, if coherently with the Sedov self similar scaling we take § o< R o< t2/% the spectrum will have the following
scalings: if v, < v, then:

p2¢—2/5 for v <u,
J, o< { p1/3¢8/5 for v, <v<wvpy (1.42)
PI=D)/23T=50)/10  for sy

if instead v, > v, then:

p2¢=2/5 for v <up,
J, o< { p5/2411/10 for vy, <v <, (1.43)
p(I=P)/243(T=5p) /10 for 1 >y,

This shows that the temporal evolution of the spectrum allows one to identify the Sedov phase.

1.4.4 Calorimetry

From Eq. 1.34 one sees that at any one time the spectrum if fully determined by the following parameters: n (or
alternatively €.), v, p, B (or alternatively ep), R, 6. The spectral slopes (directly related to p) and breaks (if
identified with the v, and v,), together with the spectral normalization allow one to fix four of these parameters
as a function of the remaining two. In general since n and § always enter together as nd they can be factored into a
single parameter (9 itself can be set equal to nR with n < 1). It is thus possible to express these various quantities,
for example the magnetic field, just as a function of the unknown radius. However by measuring the spectrum at
two different times ¢; and to, it is known that the radii must scale as: Ry/Ry = (t2/ t1)2/ 5. If the radii are correct
then one should recover also the correct scalings for other derived quanties like B or 7,,. Once the radius is known,
then F/p is also known. If one can derive p from other observables, of one has some idea of the possible values of
the density in the ambient medium of a GRB, it is then possible to constrain E.

10%
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— [}
B ompegan e ot £ 6r
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Figure 1.17: Left panel: distribution of the isotropic v-ray energy of the prompt emission. Right panel: distribution
of the total energy of the explosion inferred from late time calorimetry and beaming corrected for jet-break, for a
set of GRBs.

It is found, see Fig. 1.17 that the typical total energy involved in GRBs is of the order of 10%! erg, comparable
to the typical energy of a SN, with typical upper limit ~ a few 1052erg. This suggest that the jet solid angle is
~ 41 /100, corresponding to an opening angle < 10°.







CHAPTER 2

THE FIREBALL MODEL

2.1 The Fireball Idea

As we discussed the observed millisecond time variability of GRBs, immediately points toward a compact engine,
of typical size 7; ~ 107 cm. On the other hand the duration of the prompt emission ~ 1 — 100 s, suggests that
energy injection is not impulsive but is continuous on the timescale of the engine. the large amount of energy
confined within such a small volume can be described as a fire-ball. The term fireball refers to any system where
the energy density is so high that photond are in thermal equilibrium with a plasma of electrons and positrons, at
typical relativistic conditions.

2.1.1 Conditions at injection

The typical temperature at the base of the central engine at what is known as the injection radius can be computed
recalling that GRBs are associated to the gravitational collapse of the core of a massive progenitor or the merging
of a binary NS. In both cases we are dealing with a mass of the order of 1.5 — 3M. The energy involved in both
events are of the order of the gravitational binding energy GM?/R ~ 5 x 10°3 erg, where typical radii are ~ 10°
cm. Not all of this energy ends in the GRB. Most of it is radiated away, in the form of GWs, and neutrinos, which
are decoupled form matter. Only a fraction ~ 102 thermalizes into a fireball of e* pairs and high energy photons,
with a typical black body temperature at the injection radius r;:

11 M 1/2 10%cm 1/4 107cm 3/4

4rr} 4osb 14 1072GM2 T 10" w5875 R T K
i = 1= V2 7 105em\ 4 /107 em \ 34

0 () " () (1%em) T ey

3 ¢ R
The black-body thermal energy is much higher than the rest mass energy of e*, such that there will be copious
pair production. The system is also optically thick for photon propagation. The typical baryon density at the base
of the engine can be computed recalling that ultimately baryons (protons) are accelerated up to Lorentz factor
YarB ~ 500 — 1000. This implies that the average energy per baryon should be:

GM? dr3 M 2 /10%m 107cm \ ®
2 - 2 i N 30 -3
10 ~ YGRBNpMpC 3 = n,~2x10 (1'5 @) ( ) ( o ) cm 2.2)

2.1
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2.1.2 Pair creation

We are going to begin our characterization of the fireball with a discussion of the equilibrium properties of the
reaction ete™ <+ . We recall that the chemical potential x is defined as the energy change with particle number
at fixed volume and entropy:

dU = TdS + pdN (2.3)

and p represents the amount of energy required to increase by one the numer of particles in a closed system. We
see immediately that y = (dU/dN)r—o, the energy required to add a particle at zero temperature. Photons have
zero chemical potential (it takes zero energy to add a photon to a black-body at zero temperature). On the other
hand fermions have a non-zero chemical potential due to Pauli’s exclusion principle, and to the fact that they have a

finite rest mass. The equilibrium condition will then reads 4 4+ p— = 0. Now for electron and positrons following
Fermi-Dirac statistic, the chemical potential can be related to the density and temperature by:
* 4rp3dp 1 < 8rp? en/FT . S

n = 2/0 (@nh) el /T — — /O Wmdp in the classical limit 2.4)

where the energy € = c4/p? + m2c2. In the relativistic (¢ = cp) and non relativistic (¢ = mc? + p?/2m) regime
one has:

KT\? 1 KT\ ;
n=2 (ch) ﬁe“/kT and n=2 <T2);Lrh2> e(n=me®)/kT 2.5)

now using the equilibrium condition on the chemical potentials one finds:

KT\C 1 mkT\® e ir
nin_ =4 <ch> " and nin_ =4 <27rh2> e / (2.6)
Now if n,, is the number of electrons in the absence of pair production (the electron excess) then one hasn_ —n =
Ne = 712+ + non4 —nyn_ = 0. This is just a second-order equation that can be solved for n+ = to give:
1/2
6 ( kT \°
2y +n, = |n2+2 (@> < 2) eQmCQ/kT] for kT < mc? 2.7
h Tme
1/2
16 6 (kT \°
2ny +n, = ng + = (%) <2> for kT > mc? 2.8)
™ h mc
(2.9)

The temperature at which n, = n, (or equivalently the density of the unpaired electrons n, below which the
density of pairs due to photon pair production/annihilation is larger) can be considered as the reference temperature
(density) for efficient pair-radiation coupling. One has in the relativistic and non-relativistic regime:

4 kT \? kT \?
2V/2n, = —2\° [ —— = n,=26x10°( -~ cm? (2.10)
w2 c mc? mc2
2 kT \ %2 . kT \*/? .
2V/2n, = ﬁ)\c_g (mc2> em/RT =16 x 1030 (mc?) e~ /KT oy =3 (2.11)

which can be used to establish if there is or not efficient pair-production coupling. It is evident that for T' > mc?
pair-production will be efficient even at densities p = m,n, > 4 x 10% g cm~>. If instead one considers the non
relativistic limit one finds that the threshold ranges from k7'/mc? ~ 0.011 for n, ~ 1071% cm~=3, to kT /mc? ~
0.016 for n, ~ 1 cm~2, and kT /mc? ~ 0.05 for n, ~ 10?° cm 3.
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For kT ~ 10MeV the threshold density is n, = n, ~ 2 x 103 cm ~3 much higher than the typical proton
density at the base of the engine given by the estimate Eq. 2.2, which instead give a typical coupling temperature
kT ~ 1MeV.

One can compute the typical number density of pairs in the limit 7 >> m.c? and the reasult is:

3
ny & 3 (kT) (2.12)

w2 \ he

this is comparable with the typical photon density:

72 (KT 1 7 (kT\"
~ ~ T 2.1
T <h3c3 ) hVmax 45 <hc) @13)

and for temperatures of the order of 10 Mev the typical densities are ~ 1034 cm ~3, >> np.

2.1.3 Optical Depth

One can then check the optical thickness of the injection region for processes involving pair and photon scattering.
The three main processes that define the mean free path for pairs and photons, are pair creation/annihilation and
Compton scattering. The cross section for these processes are shown in Fig. 2.1, and, as one can see, at the typical
energies of interest £ ~ 10MeV, they ranges between 10~3 to 102 times the Thompson cross section.

1.000 E I ]
= . CJ’onﬂ/o’T ]
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0.001 .
| 5 100
£/mc?

Figure 2.1: Cross sections for pair annihilation (dotted line), photon-photon pair production (dashed line) and
inverse compton scattering (solid line), with respect to the Thompson cross section, given as a function of the
“center of mass” total energy.

The photon mean free path, for Thompson/Compton scattering, considering that at T = 10 MeV n4 ~ 10*n, =
10%n, ~ 103 cm™3, will be:

1/nioie =~ 7x 107 %m < r; (2.14)
such that the depth is 7 ~ 10*¢. The pair mean free path for electron positron annihilation will be:

1/nsoanm ~ 7 x 107 %cm < r; (2.15)
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and again the depth is 7 ~ 10'°,

The photon mean free path for photon-photon pair production is instead:

E 1 L~10-2GM2 3 1 L
|4 hfl/max Opp - R 4777'? 282k‘bT Opp

1/nyopp & ~4x 10 %em < 1y (2.16)

where we have taken hvy., ~ 10MeV — T ~ 10''K. This again implies an optical depth for pair creation
7 ~ 10'5. The mean free paths at the source justify the assumption of thermal equilibrium and high scatter-
ing/interaction depth for pairs and photons.

With this conditions the plasma at the central engine can be described as a fireball.

2.2 Dynamical evolution of a fireball

Given the temperature and energy of the fireball at injection one immediately see that the system will rapidly
expand at relativistic speed. At the very base of the system r ~ 7r; the typical outflow speeds will be of the order
of the twermal speed of the fireball 7' ~ 10MeV = v ~ 10. The observed variability suggests that in many cases
we are not dealign with a smooth continuous flow, but with the ejection of clump (shells) of matter. In principle
each of these shell will have sligthly different conditions, and will undergo different acceleration as it expands,
with respect to the preceeding and following one. One can the consisder the typical average condition of the shells
and then check how their differences impact on the evolution.

2.2.1 Expansion

As we have seen, in order to accelerate a relativistic outflow, the ratio of the energy of the gas F over its mass M
should be much larger than unity.

We assume that the fireball produced by the central engine central engine, can be described in terms of a series of
shells (or blobs) that are emitted at an injection radius r;, with Lorentz factor 1 < v; < E/M c?. Let A be the
typical thickness of these shells. Then one can write mass, entropy and energy conservation for a single shell as:

r*ypA = riyipi 2.17)
SN, (2.18)

22 (p +4e/3)A = rivZ(p; + 4e;/3) A, (2.19)

r2yed/ A = r2ye

where e is the net internal energy and we have assumed a relativistic gas with p = e/3, and v > 1.
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2.2.1.1 Radiation Dominated Phase We make at this point the so called frozen spike approximation A = A,;.
Initially one starts with a relativistically hot plasma with e;/p; ~ E/Mc? >> 1 (where we assume that the typical
energy per baryon of the various shells is of the same order) . Then one can write:

r2yp = const, T2’y€3/4 = const, r2~%e = const. (2.20)
giving:
e=ei(r/ro)™"  p=pilr/r)T v =lr/r) 2.21)

This is the radiation dominated phase, during which the Lorentz factor increases proportionally to the radius, and
that last until e/p ~ 1 = r = r;(e;p;). Which defines the so called saturation radius and Lorenz factor:

Ry = 1i(E/Mc*) ~ 5 x 10° Ri7Es2/M_5 cm vs = i (E/Mc?) ~ 500; Esy /M _5 (2.22)

where we have se Esp = E/10°2 ergs!, and M_5 = M/107° M,

2.2.1.2 Matter Dominated Phase Atr = R, the outflow enters the matter dominated phase. In the frozen-spike
approximation one can write:

r2yp = const, 7’2’)/63/4 = const, r?~y%p = const. (2.23)
giving:
e=es(r/R) ™%, p=pr/R)7?, =1 (2.24)

where eg, ps and 75 are evaluated at the saturation radius. In the matter dominated phase the frozen-spike approxi-
mation does not holds at all radii. Once it breaks A o r and one has:

e=es(r/R)™Y  p=pr/R), v =1 (2.25)

showing that the Lorentz factor remain constant at the saturation value.

2.2.2 Internal Dissipation

First we are going to show that during the radiation dominated phase, the frozen spike approximation holds. Let us
assume that a shell is injected with typical average Lorentz factor ;, and a typical thickness A; = ¢dt; ~ r; = ct;
from each other. Now in general the front and back sides of the shell (f and b) will be injected with different
Lorentz factor v¢; >~ 7y4; ~ 7; > 1. Assume that back side b is injected with a lower Lorentz factor than the front
f, and that each evolve according to Eq. 2.25 so that in principle the thickness will increase (but the math can be
repeated in the other case leading to the same result). Then:

Vs A

rf Ty T
0Y = = Yo = VpiTs — Wim- = Vi~ Wi 2.26
Y= Yo = Vfi T Voi r Yfi " Ybi " + 5 - ( )
r A r A r
~0vi—+Yi— =% {777 + } Vil — =1y 2.27)
T T i Ty T

where we have set 7, = r—A/2, 1 = r+A/2, 17y = (v2; —v1:)/7vi S 1, and we have set A < r. This difference

in Lorentz factor corresponds to a different velocity jv. Now for a relativistic flow:

5
v=1 -~ 2~1-1/29 = 51;:2—:57:7%:% (2.28)
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Then the shell thickness will evolve according to dA /dt = dv, as:

t tn ’YT] tz t’i 1 1 tz
A(t)zAH—/ 5vdt:/ —gdt:AH—/ 2 —dy = Aj+ 1y — [—} Ai+ny— (229
o o 7 v Vi Yi LY v Vi

7 7

T

In the same way we can show that during the radiation dominated phase, the various shells do not interact among
them, so that each evolve as an isolated one. We just need to repeat the previous math substituting the shell
thickness A with the shell separation A, and consider the case of two shells emitted in succession with 0t; = A/c,
and with the inner one going at a higher Lorentz factor, so that in principle it can catch up with the previous. The
final result will be the same

T
A(t) =< A; + g Ni[L+ /77 =~ A 2.31)

So we can conclude that during the radiation dominated phase each shell evolve as an isolated structure of constant
thickness such that neither inner (in the shell) nor intra (among shells) dissipation take place.

For the matter dominated phase instead one has:

ct — ctg r— Ry
=0 +ny—— (2.32)
V2 7 a2

this set the limit for the application of the frozen -spike approximation:

1
Y=y = 51):777? = A(t)=A;+1n,

Ry = Ry + ﬁﬁ (2.33)
Ty

for n, ~ 1, and A; ~ r; ~ 107cm, we have Rq ~ 10'! cm. This is about a factor 10 laerger than the typical
radii of carbon-oxygen WR star whose core has just collapsed. At such distance the variious shells will begin to
interact. This interaction will dissipate the relative internal energy and lead to emission. This mechanism is known
as internal shocks model, and it is invoked to expalin the prompt y-ray emission.

2.2.3 Slow-down

The coasting phase, where the system expands at a constant Lorentz factor (apart from the interaction of the various
shells that only dissipate the relative energy) will last as long as the swept-up mass is mall enough not to affect the
dynamics.

The flow will begin to slow down once the condition:

4 ,
%nmp(ctsl)d"yfmscz =F (2.34)

is met. Puttign typical values for the energy, and the ISM density one finds radii od the order of 10'® c¢m, corre-
sponding to a typical time ~ 1 day. This set the beginning of the so called X-ray afterglow, which is mostly due
to the emission of the shock front propagating in the surrounding medium, and that can be described using the
Blandford-McKee solution:

3E A
t)=| —— t3/8 2.35
(®) <2567mmp02 ) (2-35)
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2.2.4 Newtonian Timescale

When the Lorentz factor reaches unity the system enters the Newtonian phase, when iy will evolve according to
the standard Sedov solution. The Newtonian timescale is set by:

3E 1/3
ItNewt = | ==————= 2.36
Newt (2567mmp02) (2-36)

corresponding to typical timescales of a few hundreds days.



	GRBs: What Observations Tell Us
	GRBs History and Phenomenology
	Canonical Models for GRBs Engines

	GRBs are relativistic
	Cavallo Rees Relation
	Compactness
	Radio Scintillation

	GRBs are collimated
	Radio Calorimetry of GRBs in the late Sedov Phase
	Synchrotron Emissivity and Absorption Coefficient for a Power-law Distribution
	Synchrotron Spectrum of a Thin Shell
	Sedov evolution
	Calorimetry


	The Fireball Model
	The Fireball Idea
	Conditions at injection
	Pair creation
	Optical Depth

	Dynamical evolution of a fireball
	Expansion
	Internal Dissipation
	Slow-down
	Newtonian Timescale



