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CHAPTER 1

RELATIVISTIC HYDRODYNAMICS

Why should we care about relativistic fluids and flows in astrophysics? where relativistic conditions become im-
portant, and how much do they change the result with respect to a non relativistic description? what does it mean to
be relativistic? how much the results and tecniques developed in relativistic astrophysics are relevant to other fields.

Many of the astrophysical sources of high-energy radiation and particles are believed to involve the presence of
relativistic motions, and/or strong gravitational and electromagnetic fields. Relativistic conditions held at the very
birth of the Universe, and even today during the most violent events associated to the death of stars. Extra-galactic
jets in AGN, or micro-quasar jets have typical Lorentz factors of the orser of 10. Gamma Ray Bursts are associ-
ated to relativistic explosions with Lorentz factors of the order of a thousand. Pulsar winds inflating plerion-like
supernova remnants have Lorentz factors as high as 106. On the other hand the central engines powering such
outflows are thought to be Black-Holes fed by accretion disks, and/or Neutron Stars, where strong gravity and
General relativistic effects play a major role on the dynamics of the flow.

Relativistic conditions can also be reproduced in our labs, for brief moments, during heavy ions collisions, and
the covariant tecniques developed to handle flow in curved spacetimes, can be applied to any manifold indepen-
dently of the origin of its curvature.

1.1 Relativistic Recap 1: vectors, tensors, and metric

A 4-dimensional manifold M is a topological space (a set of points, along with a set of neighbourhoods for each
point that satisfied Hausdorff axioms) where each point has a neighbourhood that is homeomorphic to the Euclidean
space of dimension 4 (there is a one-to-one bejective, continous map and with continuous inverse between the two).

A coordinate map Φ, for a 4-dimensional manifold M is an invertible map between a subset of the manifold
(or even the entire manyfold) and a subset of the Euclidean space R4. This map associates to each point P of M,
a point in R4 defined by its Cartesian Coordinates x = (xo, x1, x2, x3). These are the coodinates of the point P ,
with resepect to the given map, which then defines a coordinate system. A different coordinate map, Φ′, defines
different coordinate system x′. A coodinate transformation is defined as:

F : R4 → R4 = Φ′(Φ−1(P)) ⇒ x′ = F (x) and x = F−1(x′) (1.1)

which in coordinates read: xµ
′

= Fµ
′
(x) and xµ = (F−1)µ(x′).

If F is differentiable, then we talk of a differentiable manifold and one can define the transformation matrices:

Λµ
′

µ =
∂xµ

′

∂xµ
and Λµµ′ =

∂xµ

∂xµ′ with Λµ
′

µΛµν′ = δµ
′

ν′ (1.2)

A curve or path is a continuous function from an interval I = [a, b]of R into the manyfold M (C : I → M).
Depending on the context, it is either Cor its image C(I) which is called a curve. The coordinates of the curve are
defines as a function from I to R4 according to x(τ) = Φ−1(C(τ)) with τ ∈ I . τ is the parameter of the curve
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2 RELATIVISTIC HYDRODYNAMICS

or its curvilinear abscissa. Obviously one can change the curvilinear abscissa, using any continuous invertible
function f : R→ R. Let τ = f(λ), then x(λ) = Φ−1(C(f(λ))). Different coordinates maps will provide different
coordinate rapresentation of the same curve.

The tangent vector to a curve C at a point P , with respect to the coordinate system defined by x = Φ−1(C(τ)), is
just given by:

V µP =
dxµ

dτ

∣∣
P (1.3)

where V µ are referred as the contravariant components of a vector in a specific coordinate system. Different
choices of curvilinear abscissae will lead to different tangent vectors. On the other hand the same tangent vector
will have different components in different coordinate system (one should be carefull not to confuse a vector with
its components). The contravariant component of a vector transform as:

V µ
′

= Λµ
′

µV
µ and V µ = Λµµ′V

µ′
(1.4)

Let us consider a function h : R4 → R. We can then define the value of h at any point P along a curve C as h(P).
The derivative of this function along the curve xµ(τ) is:

dh

dτ
=

dh

dxµ
dxµ

dτ
= V µ

dh

dxµ
= V µUµ (1.5)

where Uµ defines covariant components in the given coordinate system of the gradient of the function h at the
point P . Now for a change of coordinate systems:

Uµ′ =
dh

dxµ′ =
dh

dxµ
∂xµ

∂xµ′ = Λµµ′Uµ (1.6)

which implies that V µUµ = V µ
′
Uµ′ , independent of the coordinate system.

The set of all tangent vectors at a point P of a manifold M, is known as the local tangent space T P(M).
The set of all tangent spaces, the space of smooth vector fields on M, or is known as its tangent bundle T (M).
It is then possible to define vectors in a geometrical way. Let eµ be a basis for the tangent space, than any vector
can be written as:

V = V µeµ (1.7)

where V µ are the vector components in the given basis. To the tangent space and tangen bundle one can associate
a dual space of 1-forms T ∗(M) (the space of all linear applications T (M) → R). This is also a vectro space
such that any of its element can be written as:

U = Uµe
µ (1.8)

of all the possible basis for the dual tangent space, the most relevant is the dual basis ωµ such that ωµ(eν) = δµν .
One can then show that:

U(V ) = V µUνω
ν(eµ) = V µUµ (1.9)

One imediately recognizes in the relation between the components of vectors and the associated 1-forms, the
relation between the contravariant and covariant components of four-vectors. The concept of vectors and 1-forms
can be extended to that of tensor. A tensor T of type

(
q
p

)
is an element belonging to T (M)p times⊗T ∗(M)q times

with components Tα1.....αp
β1.....βq

in the basis (eα)p times ⊗ (eβ)q times, given as:

T = T
α1.....αp
β1.....βq

eα1
⊗ ...⊗ eαp ⊗ eβ1 ⊗ ...⊗ eβq . (1.10)
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A spacetime is a smooth manifold M of dimension 4, endowed with a bilinear symmetric form g called Loren-
zian metric that in any point P of M, to any two vectors u and v belonging to the local tangent space T P(M),
associates a real number:

∀(u,v) ∈ T p(M)× T p(M), g(u,v) := u · v ∈ R. (1.11)

The metric g allows one to associate to any vector of T (M) its corresponding 1-form in the dual space.

∀u ∈ T (M) g(u, ·) = g(·,u) ∈ T ∗(M) with components uβ = gαβu
α. (1.12)

For the basis vectors one has g(eµ, ·) = gµνe
ν , where eν is a basis for the dual space. Then one has:

g(u, ·) = g(uµeµ, ·) = uµg(eµ, ·) = uµgµνe
ν = uνe

ν ⇒ uν = uµgµν (1.13)

and one finds that the the metric allows one to relate the covariant and contravariant component of a vector (or a
vector and its related 1-form) to each other.

1.2 Relativistic Recap 2: derivatives and divergence of vectors and ten-
sors

An affine connection ∇ is defined as a geometric object on a smooth manifold which connects nearby tangent
spaces, and so permits tangent vector fields to be differentiated as if they were functions on the manifold with
values in a fixed vector space. In general given an infinitesima displacement dxµ the contravarient component of a
vector will change by an amount:

dV ν = ∂µV
ν(dxµ)− ΓνµκV

κ(dxµ) (1.14)

where the first term describes how the components along the vector basis at the original point change with the dis-
placement, the second term is related to that change of the basis itself with the displacement, and ∂µ is the standard
partial derivative along the coordinate axes defined by the vector basis

It can be shown that there is a unique torsion-free affine connection that preserves the metric.

∇u(g(v,w)) = g(∇uv,w) + g(v,∇uw), (1.15)

where ∇u indicates a derivative along the direction of the vector u. This connection is known as covariant
derivative and satisfies ∇µgνλ = 0. In this case the Christoffel symbol is given by:

Γλµν =
gλκ

2
(∂µgκν + ∂νgκµ − ∂κgµν) . (1.16)

The action of the covariant derivative on a tensor of type
(
q
p

)
is:

∇µT
α1...αp
β1...βq

= ∂µT
α1...αp
β1...βq

+
∑
i

ΓλµβiT
α1...αp
β1...λ...βq

−
∑
i

ΓαiµλT
α1...λ...αp
β1...βq

, (1.17)

In particluar the covariant derivative of a vector in terms of covariant and contravariant components is:

∇µV ν = ∂µV
ν − ΓνµκV

κ; ∇µVν = ∂µVν − ΓκµνVκ (1.18)

This definition allows one to write the 4-divergence of vectors and tensors. Calling −g the determinant of the
metric (g = −det[gµν ]), the 4-divergence of a 4-vector V µ is found to be:

∇µV µ = g−1/2∂µ(g1/2V µ); (1.19)
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the 4-divergence of a symmetric tensor of rank 2, Tµν , is:

∇µTµν = g−1/2∂µ(g1/2Tµν) + ΓµνλT
µλ, (1.20)

∇µTµν = g−1/2∂µ(g1/2Tµν)− ΓλνµT
µ
λ = g−1/2∂µ(g1/2Tµν )− Tµλ

2
∂νgλµ; (1.21)

while the 4-divergence of an anti-symmetric tensor of rank 2, Aµν , is:

∇µAµν = g−1/2∂µ(g1/2Aµν). (1.22)

1.3 Non-relativistic Fluids Recap

In non relativistic fluid dymanics, the basic equations describing the behaviour of a simple fluid, treated as a
continuous medium, are the mass conservation, the momentum conservation, and the energy conservation laws:

∂tρ+∇ · (ρv) = 0; ∂t(ρv) +∇ · (ρvv + τ ) = 0; ∂t(ρv
2/2 + e) +∇ · (ρv2v/2 + h) = 0; (1.23)

where ρ is the fluid density, v the velocity, τ the stress tensor, e the internal energy density, h the thermal energy
flow, and with∇ we indicate the standard 3-dimensional space divergence operator. These equations are written in
conservative form (the time variation of a quantity is equal to the divergence of a “flux”).

For an ideal fluid τ = pI , and h = pv, where p is the fluid pressure and I is the 3-dimensional identity ten-
sor. These equations however are not sufficient to constrain the behaviour of a fluid. This can be easily seen if
one consider discontinuous solutions as shocks. If one looks for a time independent result (∂t(·) = 0), then the
divergence of the fields across a shock can be integrated, and the result is the conservation of the flow upstream (u)
and downstream (d) of the shock:

[ρv]d = [ρv]u; [ρv2 + p]d = [ρv2 + p]u; [ρv3/2 + pv]d = [ρv3/2 + pv]u; (1.24)

where we assumed and ideal fluid, and took the flow velocity to be perpendicular to the shock. In a shock a
supersonic incoming flow is slowed down to a subsonic condition, converting kinetic energy into thermal energy.
However if you look at the equations you will realize that the substitution v → −v leads to another solution,
corresponding to a subsonic flow that turns supersonic. This is not possible because it implies a spontaneous
conversion of thermal energy into kinetic energy that would violate the second principle of thermodynamics. In
order to get the correct behaviour of a fluid one needs also to impose a condition on the entropy s or, better to say,
on its possible variations: ∆s ≥ 0

1.4 Covariant Formulation for Relativistic Fluids

Consider a general space-time with metric tensor gµν and signature (−,+,+,+), and let ∇µ be the geometric
covariant derivative associated to it (∇λgµν = 0).

In relativistic fluid dynamics it is possible to cast the equations in covariant form using tensors for the various
quantities, namely: the energy-momentum tensor Tµν ; the 4-vector number current Nµ representing the net con-
served charge current; and the entropy 4-current Sµ. In nuclear physics for example, the conserved charge is
usually taken to be the net baryon number. In the one-fluid (single species) approximation, it can be taken to be the
particles number, or the mass (if all the particles have the same mass). In general there will be as many conserved
currents as there are conserved charges.

The equations of relativistic fluid-dynamics are the baryon number (or equivalently mass) conservation, the energy-
momentum conservation, and the second principle of thermodynamics:

∇µNµ = 0, (1.25)
∇µTµν = 0, (1.26)
∇µSµ ≥ 0. (1.27)
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These are just 6 equations for 18 independent unknown quantities (given that the energy-momentum tensor is as-
sumed to be symmetric).

It is always possible to perform a tensor decomposition of Nµ, Tµν , and Sµ with respect to any arbitrary time-like
4-vector Uµ, normalized as UµUµ = −1. Such decomposition gives a parallel time-like part, and an orthogonal
space-like part (with projecton operator ∆µν := UµUν + gµν). Then one can write:

Nµ = NUµ + V µ (1.28)
Tµν = EUµUν +QµUν +QνUµ +Wµν (1.29)
Sµ = SUµ +Hµ (1.30)

Since Uµ is time-like, it can be thought of as the 4-velocity of an observer. The various quantities of the tensor
decomposition have a special meaning for this observer:

N = −UµNµ is the net baryon (mass) density;

V µ = ∆µ
νN

ν is the net flow of baryons (mass);

E = UµUνT
µν is the energy density;

Qµ = Uν∆µ
λT

νλ is the energy flow;

Wµν is the stress-tensor;

S = −UµSµ is the entropy density;

Hµ = ∆µ
νS

ν is the net entropy flux.

Among the various arbitrary choices for Uµ, of particular relevance is the one that gives V µ = 0, corresponding to
an observer that sees no net flow of particles (mass) in its reference frame. This is known as comoving observer,
and its frame as comoving reference frame. To distinguish it from other observers we will use lower case letters to
specify the various quantities as seen in its frame (e.g. the comoving observer 4-velocity will be uµ). N , E and
S are then the comoving particle (n), energy (e) and entropy (s) density respectively. The quantity uµ∇µ repre-
sents instead the proper derivative that describes how quantities change along the flow (as seen by the comoving
observer), to be identified with the Lagrangian derivative of classical mechanics.

For example the particle number (mass) conservation reads:

∇µNµ = ∇µ(NUµ) = ∇µ(nuµ) = 0 ⇒ uµ∇µn = −n∇µuµ, (1.31)

stating that the change of the comoving density is related to the 4-divergence of the flow field.

The energy conservation law (itself a 4-tensor) can also be projected along Uµ and perpendicular to it. Let us
consider the parallel component in the comoving reference frame:

Uν∇µTµν = uν∇µ(euµuν+qνuµ+qµuν+wµν) = −∇µ(euµ)+uνu
µ∇µqν−∇µqµ+uν∇µwµν = 0, (1.32)

where, as before, we have used lower-case letters, the projection relation uµqµ = 0, and the relation uν∇µuν = 0
valid for any 4-vector of fixed norm. The above equation Eq. (1.32) can be further simplified:

uµ∇µe+ e∇µuµ + qνuµ∇µuν +∇µqµ + wµν∇µuν = 0, (1.33)

recalling the one also has uνwµν = 0, again due to projection.

It is convenient to write the entropy equation in terms of the specific entropy s̃ = s/n:

∇µSµ = ∇µ(SUµ +Hµ) = ∇µ(nuµs̃+ hµ) ≥ 0 ⇒ nuµ∇µs̃+∇µhµ ≥ 0. (1.34)

This equation states that the specific entropy of a fluid element as it moves, can grow due to an entropy flux (for
example an heat flux from the surrounding), but it can grow even in the absence of net entropy flux, and in this case
one speaks of internal dissipative processes.
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1.4.1 Thermodynamic Relations

Before proceeding further, let us recall here a few thermodynamics relations that will be of use to derive an equa-
tion for the quantities qµ and wµν , that relates them to the dissipative nature of the flow.

The first law of thermodynamics, relating the change in total internal energy E to the change in volume V , and
entropy S for a system having an isotropic pressure p is:

dE = TdS − pdV, (1.35)

where T is the temperature. This can be rewritten in terms of specific quantities recalling that the specific volume
(the volume taken by one particle) is 1/n.

dẽ = Tds̃+ pdn/n2 ⇒ Tds̃ = dẽ− pdn/n2 (1.36)

1.4.2 Entropy and the Energy-Momentum Tensor of Ideal Fluids

For a relativistic system the specific internal energy is related to the total energy density, the particle number density
and the particle rest mass (m, its invariant mass) by the relation e = n(m+ ẽ) ⇒ ẽ = e/n−m. Then Eq. (1.36),
using Eq. (1.31) and Eq. (2.19), reads:

Tuµ∇µs̃ = uµ∇µẽ−
puµ∇µn
n2

=
uµ∇µe
n

− (e+ p)uµ∇µn
n2

=
uµ∇µe
n

+
(e+ p)∇µuµ

n
(1.37)

nTuµ∇µs̃ = uµ∇µe+ (e+ p)∇µuµ = −qνuµ∇µuν −∇µqµ − wµν∇µuν + p∇µuµ. (1.38)

It is always possible to do the furter decomposition wµν = πµν + Π∆µν , where Π is given by the trace and
represents the isotropic part, while πµν is the trace-free part. Then Eq. (1.34) gives:

T∇µsµ + T∇µhµ = −qνuµ∇µuν − πµν∇µuν − (Π− p)∇µuµ − T∇µ q
µ

T − q
µ∇µT

T + T∇µhµ (1.39)

T∇µSµ = −qν
[
uµ∇µuν + ∇νT

T

]
− πµν∇µuν − (Π− p)∇µuµ − T∇µ

[
qµ

T − h
µ
]
≥ 0. (1.40)

Ideal fluids are those that satisfy∇µSµ = 0 for any value of the temperature T and for any velocity field uµ. From
the above equation it is evident that this is possible only if qµ = 0, πµν = 0, Π = p and ∇µhµ = 0 (one can then
set hµ = 0 given that it enters the equations only via its divergence).

Then the energy-momentum tensor for an ideal fluid, with isotropic pressure is:

Tµν = euµuν + p∆µν = (e+ p)uµuν + pgµν = ρ

(
1 + ε+

p

ρ

)
uµuν + pgµν = ρhuµuν + pgµν , (1.41)

where ε = e/ρ− 1 is the specific internal energy per unit mass, and h = 1 + ε+ p/ρ is the specific enthalpy.

Note that this is the only possible form for the energy-momentum tensor of an ideal fluid. In an ideal fluid there is
no other flow than the fluid flow itself uµ (there is no heat flow). In a space-time with metric gµν containing matter
with 4-velocity uµ the only independent symmetric tensors that it is possible to define are gµν itself and uµuν , so
any symmetric tensor, including the energy-momentum tensor, must be of the form auµuν + bgµν , wth a and b
arbitrary scalar functions of the position xµ. Analogoulsy, being there only one 4-vector, uµ, one has Nµ ‖ uµ.

1.4.3 Equation of State

For ideal fluids mass conservation and energy-momentum conservation provide a set of 5 equations for 6 un-
knowns: density ρ, internal energy density ε = ρε, pressure p and four velocity uµ (one of the component is
already constrained by the relation uµuµ = −1). A further equation is needed to close the system. This is provided
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by the so called equation of state (EoS), linking the pressure, density and internal energy: p = p(ρ, ε).

Thermodynamics guarantees that at equilibrium this can de derived from the functional form of the entropy
s = s(ρ, p). Of particular interest are the so called polytropic gases where s = ln (p/ρΓ), with Γ known as
polytropic index. In these gases ε = p/(Γ− 1).

1.5 3 + 1 Formalism

It is well known that in General Relativity (GR), the laws of physics take a fully covariant form (think for example
to Einstein equationsGµν = 8πG/c4 Tµν): there is no formal distinction between space and time coordinates, that
are mixed on the same footage. The equations that we have derived in the previous section, governing the dynamics
of relativistic fluids, and defining their conserved 4-currents and energy-momentum tensor, are also written in fully
covariant form. However, it is costumary to think processes in nature as varying in time and space, separately.
The time/space separation of pre-relativistic physics is pervasive of the way we tend to study and interpret nature.
Moreover the time-space separation is necessary to connect the results found in GR to the Newtonian limit of our
experiments, and to give a proper physical meaning to the various relativistic quantities.

1.5.1 3 + 1 Splitting for the Metric

In the 3+1 formalism, the 4D space-time is foliated into non-intersecting space-like hyper-surfaces Σt , defined as
iso-surfaces of a scalar time function t. The future-pointing, time-like unit vector normal to the slices Σt is defined
as:

nµ = α∇µt such that nµn
µ = −1 (1.42)

where α is called lapse fuction. nµ is a 4-velocity, and its associated observer is called Eulerian observer (the
observer attached to the hyper-surface). We have shown in the previous section how to decompose any tensor
into parallel and orthogonal components with respect to any 4-vector. Introducing the projection operator ⊥µν :=
nµnν + gµν , we will call temporal the componets parallel to nµ and spatial those orthogonal (laying on Σt). The
metric itself can be decomposed, and its orthogonal part is:

gµν − (gλκn
λnκ)nµnν = gµν + nµnν = γµν =⊥µν (1.43)

which can be thought of as the metric induced on the 3D space-like hyper-surface by the projection of the 4D metric.

At this point, it is convenient to introduce a coordinate system xµ = (t, xi) adapted to the foliation Σt. The
line element can then be written as:

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (1.44)

where the spatial vector βµ (βµnµ = 0) is known as shift vector.

Notice that the spatial metric γij can now be used for the raising and lowering of indexes for purely spatial vectors
and tensors. In this coordinate system the unit vector components are:

nµ = (−α, 0i), nµ = (1/α,−βi/α). (1.45)

Recalling that nµ∇νnµ = 0, its covariant derivative can also by split into spatial and temporal components accord-
ing to:

∇µnν = −Kµν − nµaν with aν = nα∇αuν =⊥αν ∇α lnα (1.46)

where Kµν is known as extrinsic curvature, and tells how the normal vector changes along the hyper-surface. One
can use the projection operator to projet the covariant derivative of any tensor, and in particular it can be shown
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that given a tensor field T on the hypersurface Σt (for us a purely spatial tensor), its covariant derivative in the
hypersurface (the spacial covariant derivative is the connection ∇̃ such that ∇̃kγij = 0) can be espressed in terms
of the covarint derivative with respect to the 4-metric gµν :

∇̃κT
α1....αp
β1....βq

=⊥λκ
p∏
i=1

⊥αiµi
q∏
j=1

⊥νjβj ∇λT
µ1...µp
ν1...νp (1.47)

Called γ̃ the determinant of the 3-metric γij , such that g = α2γ̃, one has:

∇̃ivi = γ̃−1/2∂i(γ̃
1/2vi) (1.48)

∂t ln (γ̃) = 2αK + 2∇̃iβi (1.49)

where K = γijKij is the trace of Kij , and the last equation comes from the time projection of Einstein equations.

1.5.2 3 + 1 Splitting for the Fluid

At this point it is possible to decompose all quantities appearing in the GRMHD equations of Sect. 1.4 into their
spatial and temporal components:

Uµ = γnµ + γvµ (1.50)
Nµ = Dnµ + Fµ (1.51)
Tµν = Unµnν +Mµnν + nµMν +Wµν (1.52)

where all the new vectors and tensors are now spatial and correspond to the familiar 3D quantities as measured by
the Eulerian observer. In particular, vµ is the usual fluid velocity vector of Lorentz factor γ = −Uµnµ = αU t:

vi = U i/γ + βi/α ⇒ vivi =
U iUi
γ2

+
βiUi
γα

=
U iUi
γ2

+
U t

γ2
[βiU

i − α2U t + α2U t]

=
UµUµ + α2U tU t

γ2
=
−1 + (αU t)2

γ2
=
−1 + γ2

γ2

⇒ γ = (1− vivi)−1/2. (1.53)

D is the mass density (or number density), Fµ the mass flux (number flux), U the energy density, Mµ the energy
flux that, for an ideal fluid, can be identified with the momentum, and Wµν the 3D stress tensor, all measured by
the Eulerian observer. Recalling Eq. (1.41), one can easily show that:

D = γρ, F i = αγρvi − γρβi (1.54)
U = ρhγ2 − p (1.55)
M i = ρhγ2vi (1.56)
W ij = ρhγ2vivj + pγij (1.57)

1.5.2.1 Mass conservation Recalling the rule for covariant derivation Eq. (1.19) one finally can write the fluid
equation in a curved spacetime separating time and space derivatives. The mass (number) conservation, is just a
scalar equation:

∇µNµ = g−1/2∂µ(g1/2ρuµ)

= α−1γ̃−1/2
[
∂t(γ̃

1/2ργ) + ∂i[γ̃
1/2γρ(αvi − βi)]

]
= ∂t(γ̃

1/2ργ) + ∂i[γ̃
1/2γρ(αvi − βi)] = 0. (1.58)

In vector form it reads:

∂t(γ̃
1/2D)

γ̃1/2
+ ∇̃ · [D(αv − β)] = 0 (1.59)



3 + 1 FORMALISM 9

1.5.2.2 Energy conservation The energy-momentum conservation is a 4-vector equation and it can be decom-
posed into a parallal (time) and orthogonal (space) component. Given Eq. (1.46), and the orthogonality relation
nνKµν = 0, the parallel component is:

nν∇µTµν = nν∇µTµν = nν∇µ[Unµnν +Mµnν + nµMν +Wµ
ν ]

= nν [∇µWµ
ν −KMν + nµ∇µMν + nν∇µMµ −MµKµν −KUnν + U∇̃ν lnα+ nµnν∇µU ]

= nν∇µWµ
ν + nνnµ∇µMν −∇µMµ +KU − nµ∇µU. (1.60)

Recalling that nνWµν = 0 and nνMν = 0, and using Eq.s (1.46)-(1.47) we have:

nν∇µWµ
ν = −Wµ

ν ∇µnν = −Wµν∇µnν = KµνW
µν (1.61)

nνnµ∇µMν = −Mνn
µ∇µnν = −Mνnµ∇µnν = −Mνaν = −Mν∇̃ν lnα (1.62)

∇νMν = ∇̃νMν +Mν∇̃ν lnα. (1.63)

Then substituting in Eq. (1.60) we finally get:

nµ∇µU + ∇̃νMν −KµνW
µν −KU + 2Mν∇̃ν lnα = 0 (1.64)

(∂t − βi∂i)U + α[∇̃νMν −KµνW
µν −KU ] + 2Mν∇̃να = 0

(∂t − βi∂i)[ρhγ2 − p] + α[∇̃i(ρhγ2vi)−Kij(ρhγ
2vivj + pγij)−K(ρhγ2 − p)] + 2ρhγ2vj∇̃jα = 0

(∂t − βi∂i)[ρhγ2 − p] + α[∇̃i(ρhγ2vi)] = α[ρhγ2(K +Kijv
ivj)]− 2ρhγ2vi∇̃iα, (1.65)

where the first term on the left hand side is a generalized time derivative of the energy density, the second term on
the left is a spacial divergence of an energy-flux, while the first term on the right hand side is a curvature effect and
the last one is the work done by gravity.

An equivalent form can be derived in a slightly different way:

nµ∇µTµν = g−1/2∂µ(g1/2Tµνnν)− Tµν∇µnν = 0 (1.66)

= −g−1/2∂µ(g1/2[Unµ −Mµ])− Tµν∇µnν = 0, (1.67)

which becomes:

∂t(γ̃
1/2[ρhγ2 − p]) + ∂i[γ̃

1/2[ρhγ2[αvi − βi] + pβi]] = γ̃1/2
(
α[ρhγ2vivj + pγij ]Kij + ρhγ2vj∇̃jα

)
. (1.68)

This, usign the metric relation Eq. (1.49) can be shown to be equivalent to Eq. (1.65). In vector form it reads:

∂t(γ̃
1/2U)

γ̃1/2
+ ∇̃ · [αM − Uβ] = αK : W −M · ∇̃α (1.69)

1.5.2.3 Momentum Conservation The orthogonal component of the energy mometum conservation law is:

γνκ∇µTµν = = γνκ∇µ[Unµnν +Mµnν + nµMν +Wµν ]

= γνκ[∇µWµν −KMν + nµ∇µMν + nν∇µMµ −MµKν
µ −KUnν + U∇̃ν lnα+ nµnν∇µU ]

= γνκ∇µWµν −KMκ + γνκn
µ∇µMν −MµKµκ + Uγνκ∇̃ν lnα

= γνκ∇µWµ
ν −KMκ + γνκn

µ∇µMν −MµKµκ + Uγνκ∇̃ν lnα. (1.70)
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Recalling Eq.s (1.43)-(1.46)-(1.47), that nσWσ
ν = 0 and nσMσ = 0 , one has:

γνκ∇µWµ
ν = γνκg

µ
σ∇µWσ

ν = γνκ [γµσ − nµnσ]∇µWσ
ν = γνκ [γµσ∇µWσ

ν +Wσ
ν n

µ∇µnσ]

= ∇̃µWµ
κ +Wµ

κ ∇̃µ lnα (1.71)
γνκn

µ∇µMν = γνκ [nµ∇µMν − α−1∇ν(αnµMµ)] = γνκn
µ[∇µMν −∇νMµ]− α−1γνκMµ∇ν(αnµ)

= [δνκ + nνnκ][nµ[∇µMν −∇νMµ]− α−1Mµ∇ν(αnµ)]

= nµ[∇µMκ −∇κMµ] + [nνnκ][nµ∇µMν +Mµ∇νnµ] +

−α−1[Mµ∇κ(αnµ) +Mµnνnκ∇ν(αnµ)]

= nµ[∂µMκ − ∂κMµ]− nκ[Mνnµ∇µnν −Mµn
ν∇νnµ] +

[MµKκµ +Mµnκn
σ∇σ(nµ)−Mµnκn

ν∇ν(nµ)]

= nµ∂µMκ +Mµ∂κn
µ +MµKκµ = α−1[αnµ∂µMκ +Mµ∂κ(αnµ) +MµαKκµ]. (1.72)

Then substituting in Eq. (1.70) one finally gets:

nµ∂µMκ +Mµ∂κn
µ + ∇̃µWµ

κ +Wµ
κ ∇̃µ lnα−KMκ + U∇̃κ lnα = 0 (1.73)

(∂t − βi∂i)[ρhγ2vj ] + ρhγ2vi∂jβ
i + α[∇̃i(ρhγ2vivj) + ∇̃jp−Kρhγ2vj ] +

+[ρhγ2]∇̃jα+ ρhγvivj∇̃iα = 0

(∂t − βi∂i)[ρhγ2vj ] + ∇̃i(αρhγ2vivj + pγij) = αKρhγ2vj − ρhγ2vi∂jβ
i − [ρhγ2]∇̃jα, (1.74)

where the first term on the left hand side is a generalized time derivative of the momentum, the second term on the
left is a spacial divergence of a stress tensor, while the first term on the right hand side is a curvature effect, the
second a frame dragging and the last one is the force by gravity.

As was done for the energy equation, also the momentum equations can be derived in a sligthly different form
making use of Eq. (1.21):

∇µTµj = g−1/2∂µ(g1/2Tµj )− Tµν∂jgµν/2 = 0. (1.75)

Using the relation nµnµ = −1⇒ nµ∂νnµ + nµ∂νn
µ = 0, and the condition γµνnν = 0, one has:

g−1/2∂µ(g1/2Tµj ) =
1

2
Tµν∂jgµν =

1

2
[Unµnν +Mµnν +Mνnµ +Wµν ]∂j(γµν − nνnµ)

g−1/2∂µ(g1/2Tµj ) =
1

2
[W ik∂jγik −Mνγµν∂jn

µ −Mµγµν∂jn
ν − Unµγµν∂jnν

+Mµ∂jnµ +Mν∂jnν + Unν∂jnν + Unµ∂jnµ]

g−1/2∂µ(g1/2Tµj ) =
1

2
[W ik∂jγik]−Mµ∂jn

µ + Unν∂jnν

g−1/2∂µ(g1/2Tµj ) =
[∂0(g1/2T 0

j ) + ∂i(g
1/2T ij )]

g1/2
=

1

2
[W ik∂jγik]− Mµ∂j(αn

µ)

α
+ Unν∂jnν . (1.76)

Hence:

1

αγ̃1/2
[∂t(γ̃

1/2Mj)− ∂i(γ̃1/2βiMj) + ∂i(γ̃
1/2αW i

j )] =
1

2
[W ik∂jγik] +

Mi∂jβ
i

α
− U∂j lnα. (1.77)

Now recalling how the covariant derivatives of symmetic tensor is written in components (as Eq. 1.20, valid also
for the 3-metric):

∂t(γ̃
1/2Mj)

γ̃1/2
− ∇̃i(βi)Mj − βi∂iMj + ∇̃i(αW i

j ) +
α

2
W ik∂jγik =

α

2
[W ik∂jγik] +Mi∂jβ

i − U∂jα

∂t(γ̃
1/2Mj)

γ̃1/2
− ∇̃i(βiMj) + Γkijβ

iMk + ∇̃i(αW i
j ) = Mi∇̃jβi + Γiikβ

kMi − U∂j lnα

∂t(γ̃
1/2Mj)

γ̃1/2
+ ∇̃i[αW i

j − βiMj ] = Mi∇̃jβi − U∂j lnα. (1.78)
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In vector form it reads:

∂t(γ̃
1/2M)

γ̃1/2
+ ∇̃ · [αW −Mβ] = (∇̃β) ·M − U∇̃α (1.79)

1.6 Euler Equation

It is possible to cast the equations of motion for an ideal fluid in a compact form that relates the acceleration (the
four-acceleration) to the pressure gradient.

Recalling that uµ∇νuµ = 0 , the energy equation provides the followig relation:

uν∇µ
[(
ρ+

Γ

Γ− 1
p

)
uµuν + pgµν

]
= uνu

ν∇µ(ρuµ) + ρuµuν∇µuν +
Γ [−∇µ(puµ) + puµuν∇µuν ]

Γ− 1
+

+uµ∇µp,
= −uµ∇µp− Γp∇µuµ = 0 (1.80)
⇒ Γ∇µ(puµ) = (Γ− 1)uµ∇µp, (1.81)

which can be used in the momentum equation to get:

(uνuκ + gνκ)∇µTµν = ∇µ
[(
ρ+

Γ

Γ− 1
p

)
uµuκ + pδµκ

]
=

(
ρ+

Γ

Γ− 1
p

)
uµ∇µuκ +∇κp+ uκ∇µ

(
ρuµ +

Γ

Γ− 1
puµ

)
= 0

(
ρ+

Γ

Γ− 1
p

)
aκ +∇κp+ uκu

µ∇µp = 0, (1.82)

where we have defined the 4-acceleration as: aκ = uµ∇µuκ. Eq. 1.82 is known as relativistic Euler equation.
Eq. 1.80, using mass conservation in the form ∇µuµ = −uµ∇µ(ρ)/ρ leads to:

uµ∇µ(p)/p− Γuµ∇µ(ρ)/ρ = uµ∇µ[ln(p/ρΓ)] = 0 (1.83)

which immediately provide the definition of the entropy for a prefect ideal fluid s = f(p/ρΓ) or alternatively that
p = f(s)ρΓ, with f a generic monotonic function.

1.7 Relativistic Vorticity

In non-relativistic fluid dynamics the vorticity is a purely kinematic definition related to the curl of the velocity
field. For relativistic fluids the relativistic vorticity is defined in a slightly different way:

Ωµν = ∇ν(huµ)−∇µ(huν) (1.84)

which includes the fliud entalpy h. First let us recall that for ideal fluids uµ∇µs = 0, and that in general p = p(ρ, s),
then uµ∇µp = (dp/dρ)uµ∇µρ = f(s)ΓρΓ−1uµ∇µρ = Γp∇µρ/ρ. Then we have:

uµ∇µh =
Γ

Γ− 1
uµ∇µ(p/ρ) =

1

ρ

Γ

Γ− 1

[
1− dρ

dp

1

ρ

]
uµ∇µ(p) =

1

ρ
uµ∇µp (1.85)
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If we contact the vorticity with the four velocity we get:

uνΩµν = uν∇ν(huµ)− uν∇µ(huν)

= huν∇νuµ + uµu
ν∇νh+∇µh (1.86)

recalling the definition of four-acceleration and Euler equation Eq. 1.82, we find:

ρuνΩµν = ρhaµ + uµu
ν∇νp+ ρ∇µh

= ρ∇µh−∇µp (1.87)

recalling that the First Law of Thermodynamics can be written as: dp = ρdh− ρTds we get:

uνΩµν = T∇µs (1.88)

this is an equivalent form of the equations of motion for an idela fluid. The antisymmetry of Ωµν ensures entropy
conservation along the flow. In a barotropic case∇µs = 0 this imply that vorticity vanishes: Ωµν = 0.

1.8 Lagrangian Formalism

It is possible to obtain the equations of relativistic fluid dynamics, for an ideal fluid, as well as its energy-momentum
tensor, from a Lagrangian approach, by evaluating variation of a matter action. This allows one to unify into one
governing equation both the dynamics of the fluid and that of the gravitational field (plus any other fileds one might
want to add). The Lagrangian, of course, is not unique.

1.8.1 Brief Intro to Lagrangian Formalism

Let us consider a system characterized by a series of fields Ψ that in general can be scalars, vectors or tensors, then
one can define the action as:

S =

∫
D
L(Ψ,∇µΨ, gµν)dv (1.89)

where L is the Lagrangian of the system, and in general is a function of the fields Ψ, of their first covariant deriva-
tives ∇µΨ and of the metric gµν . One then obtains the equations for the fields by requiring that the action is
stationary (minimal), δS = 0, for variations of the fields themselves, in the interior of a compact four-dimensional
region D (the variations must vanish at the boundary).

Given a variation of the metric due to a diffeomorphism of a manyfold onto itself δgµν , the requirement that
the action is diffeomorphism invariant gives an equation in conservative form. The variation of the metric by a
diffeomorphism can be written using the Lie derivative of a rank two tensor together with the mertic compatibility
of the covariant derivative: δgµν = LXg

µν = ∇µXν +∇νXµ. Then

δS =

∫
D

∂L
∂gµν

LXg
µνdv = 2

∫
D
Xν∇µ ∂L

∂gµν
dv = 0 ⇒ ∇µ ∂L

∂gµν
= 0 (1.90)

where we have eliminated the integral of divergences because they can be turn into a boundary integral of a
vanishing flux. If one identifies ∂L/∂gµν with the energy momentum tensor Tµν then conservation of energy and
momentum can be seen as a consequence of diffeomorphism invariance. For more on the Lagrangian formalism,
diffeomorphism invariance, and the relation between various way to define the energy momentum tensor, see Chap.
2 and App. C,E of Wald “General Relativity”.

1.8.2 Matter Action for a Perfect Fluid

In a perfect fluid the only independent matter fields are the density ρ and the four velocity uµ, subject to the
normalization uµuµ = −1, and the specific entropy s, for a total of 5 independent fields. Instead of using these
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(together with the normalization constrain), we will use the four independent components of the matter current
density Jµ = ρuµ, and the specific entropy s. The density in this case is then a derived quantity ρ2 = −JµJµ.

Before proceeding further we need to recall that the variations of these fields are not fully arbitrary, but they
must satisfy a few constraints. Two of them are well known: mass conservation must hold and entropy must be
conserved along the streamlines. These imply that ∇µJµ = 0 must be enforced also on the perturbed solution
(∇µδJµ = 0), together with Jµ∇µs = 0 (δJµ∇µs = Jµ∇µδs = 0). There is however another requirement that
is less obvious: the perturbation must hold fixed the edge points of the streamlines, or, stated in another fashion,
along each streamline there are 3 invariants corresponding to the Lagrangian coordinates of the edge point, that do
not change on the perturbed solution (they are transported along a field-line and satisfy a similar equation to the
specific entropy).

There are various way to enforce these constraints: one can either choose a perturbation in a way such that the
constraints are automatically satisfied, or one can insert them into the action using Lagrangian multipliers. To
clarify this point let us consider the non-relativistic action of a free particles S =

∫
v ·vdt, expressed in term of its

velocity. If one tries to minimize this action by varying v one gets the absurd result v = 0. This because δv is not
arbitrary, but must be of the form δv = dx/dt (i.e. the time derivative of a displacement) where it is the displace-
ment x that vanishes at the boundary. Then minimizing the action leads, after integrating by part, dv/dt = 0, which
is the correct solution (a free particles does not accelerate). This same result can be obtained leaving the perturba-
tion on v unconstrained but using Lagrangian multipliers. In this case the action is S =

∫
[v ·v−a·(v−dx/dt)]dt.

Minimizing with respect to δv gives v = a/2; minimizing with respect to δa gives v = dx/dt; minimizing with
respect to δx gives, after integrating by parts, da/dt = 0. These together mean: v = dx/dt = a/2 constant in
time.

In the following the constraints on the mass and entropy conservation will be enforced using Lagrangian multiplier,
on the other way the constraints on the conservation of the Lagrangian coordinates, will be enforced adopting for
the perturbation of the matter current density the following form based on the Lie derivative: δJ = LXJ . In prin-
ciple the conservation of Lagrangian coordinates is ensured by perturbing with the Lie derivative the four-velocity
uµ and not the matter current density Jµ, then the entropy conservation is also automatically ensured (the specific
entropy s can be seen as a different Lagrangian invariant). Given that δJµ has four degrees of freedom, instead
of just three like δuµ (δuµuµ = 0), then in order to ensure the conservation of Lagrangian coordinates using
δJ = LXJ , one needs to impose entropy conservation as an additional constraints. Then this corresponds to a
displacement of the field line done using a vector field X . The constraints on the Lagrangian coordinates are then
automatically satisfied assuming that the displacing fieldX vanishes at the boundary.

At this point let us recall some thermodynamic relations that will be of use in the following discussion. The
First Law of Thermodynamics, states that the internal energy U obeys:

dU = TdS − pdV (1.91)

where T is the temperature, S the entropy, p the pressure and V the volume. Using quantities per unit mass
V̂ = 1/ρ, s = S/ρ and ε = Û = U/ρ, one has:

dÛ = Tds+ (p/ρ2)dρ (1.92)

Now the total energy density (including rest mass) can be written as e = ρ(1 + ε) whence it follows:

ρde = ρd[ρ(1 + ε)] = ρdρ(1 + ε) + ρ2

(
∂ε

∂ρ
dρ+

∂ε

∂s
ds

)
= [e+ p]dρ+ ρ2Tds (1.93)

We can, at this point, introduce the specific enthalpy h = (e+ p)/ρ.

The action then turns out to be:

Sm[gµν , J
α, s, ξ, β] =

∫ √
−g[e(−JµJµ, s) + Jµ∇µξ + βJµ∇µs]d4x (1.94)
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where e(ρ, s) is the energy density and the fields ξ and β act as Lagrangian multipliers to enforce the conservation
of rest-mass and entropy. In fact minimizing the variation with respect to β one has:

δSm =

∫ √
−gδβ[Jµ∇µs]d4x = 0 ⇒ uµ∇µs = 0 (1.95)

while minimizing the variation with respect to ξ one has:

δSm =

∫ √
−g[∇µ(δξJµ)− δξ∇µJµ]d4x = 0 ⇒ ∇µJµ = 0 (1.96)

where the volume integral of the divergence can be eliminated because it can be turned into the integral of the flux
over the volume boundary, which vanishes given that on the boundary δξ = 0.

The variation with respect to s instead provides an equation for β:

δSm =

∫ √
−gδs

[
∂e

∂s
− Jµ∇µβ

]
d4x = 0 ⇒ Jµ∇µβ = ∂e/∂s = Tρ (1.97)

where at constant density ∂e/∂s = T , with T the thermal temperature. As before the volume integral of the diver-
gence∇µ(βJµδs) vanishes, and we have used the previous result∇µJµ = 0.

We are now ready to show how the variation with respect to Jµ leads to the equation of motion. We recall
that ρ2 = −JµJµ ⇒ 2ρδρ = −2JµδJ

µ (at fixed metric). Moreover we will take δJµ = (LXJ)µ, and turn the
variation with respect to Jµ into a variation with respect to Xµ.

δSm =

∫ √
−g
[
−1

ρ

∂e

∂ρ
Jµ +∇µξ + β∇µs

]
(LXJ)µd4x = 0 (1.98)

where now ∂e/∂ρ is taken at constant specific entropy. Setting Yµ = −∂e/(ρ∂ρ)Jµ +∇µξ + β∇µs, V µ = Jµ

and using the contraction relation (with∇µV µ = ∇µJµ = 0) Eq. D.4, one gets:

δSm =

∫ √
−g [∇µ[XµYaJ

a − JµYaXa]−XµJa[∇µYa −∇aYµ]− YaJa∇µXµ] d4x

=

∫ √
−g [−XµJa[∇µYa −∇aYµ] + (YaJ

a)∇µXµ] d4x = 0 (1.99)

where the term written as the integral of a divergence vanishes because on the boundary Xµ = 0. We are going to
show that the above relation implies two field equations. The arbitrary fieldXµ can always be written as an arbitrary
sum of a divergence-free and curl-free field: Xµ = a∇νHνµ+ b∇µψ (with Hµν an arbitrary antisymmetric tensor
field). Xµ will vanish at the boundary if Hµν and ψ are uniform and constant there. The variation of the action
must vanish for arbitrary Xµ, so it must vanish whatever the values of the constant a and b. If b = 0 then:

δSm =

∫ √
−g [−XµJa[∇µYa −∇aYµ] + (YaJ

a)∇µXµ] d4x

=

∫ √
−g [−Ja[∇µYa −∇aYµ]]Xµd4x = 0 ⇒ Ja[∇µYa −∇aYµ] = 0 (1.100)

which then implies that, if b 6= 0, also:

YµJ
µ = 0 (1.101)

this last equation leads to the following relation:

JµYµ = −1

ρ

∂e

∂ρ
JµJ

µ + Jµ∇µξ = 0 ⇒ Jµ∇µξ = −ρ∂e
∂ρ

= −(e+ p) = −hρ (1.102)
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Eq. 1.100, recalling the definition of Yµ, becomes:

Jν
[
∇µ
(
−1

ρ

∂e

∂ρ
Jν +∇νξ + β∇νs

)
−∇ν

(
−1

ρ

∂e

∂ρ
Jµ +∇µξ + β∇µs

)]
= 0 (1.103)

Jν
[
∇µ
(
−1

ρ

∂e

∂ρ
Jν + β∇νs

)
−∇ν

(
−1

ρ

∂e

∂ρ
Jµ + β∇µs

)]
= 0 (1.104)

Jν
[
∇µ
(

1

ρ

∂e

∂ρ
Jν

)
−∇ν

(
1

ρ

∂e

∂ρ
Jµ

)]
= Jν [∇νs∇µβ −∇µs∇νβ] (1.105)

Jν
[
∇µ
(

1

ρ

∂e

∂ρ
Jν

)
−∇ν

(
1

ρ

∂e

∂ρ
Jµ

)]
= −(Jν∇νβ)∇µs = −ρT∇µs (1.106)

uν [∇µ (huν)−∇ν (huµ)] = −(uν∇νβ)∇µs = −T∇µs (1.107)

where we have used the fact that for any scalar field ξ or s one has [∇µ∇ν −∇ν∇µ]ξ = 0. The equation:

uν [∇ν (huµ)−∇µ (huν)] = T∇µs (1.108)

is just Eq. 1.88, a different way to write Euler’s equation for a perfect fluid. In a barotropic case ∇µs = 0 this is
equivalent to the vorticity 2-form equation uµΩµν = 0.

It is well known that varying the action with respect to the metric gives the energy-momentum tensor of the system.
Now the the density will be affected by the variation of the metric, given that it is just a norm, in fact the general
variation of ρ, recalling Eq. B.2 is:

−2ρδρ = δ(JµJ
µ) = δ(JµJνgµν) = 2JµδJ

µ + JµJνδgµν = 2JµδJ
µ − JµJνδgµν (1.109)

then keeping the field Jµ fixed and varying the metric δρ = JµJνδg
µν/2ρ = ρuµuνδg

µν/2. Moreover we
recall that if any scalar field like ξ and s are fixed then so are its covariant derivatives ∇µξ = ∂µξ, given that
the partial derivative is metric independent, and as a consequence also their contraction with the matter current
δ(Jµ∇µξ) = 0. At this point, recalling also Eq. B.8, we can write the variation of the action with respect to the
metric δgµν :

δSm =

∫ {
δ(
√
−g) [e(ρ) + Jµ∇µξ] +

√
−g
[
∂e

∂ρ
δρ

]}
d4x

=

∫ {
−
√
−g
2

gµν [e(ρ)− hρ] +
√
−g
[
+
∂e

∂ρ

JµJν
2ρ

]}
δgµνd4x

= −1

2

∫ √
−g {gµν [e(ρ)− ρh]− ρhuµuν} δgµνd4x

=
1

2

∫ √
−g {(e+ p)uµuν + pgµν} δgµνd4x (1.110)

which immediately identifies the energy-momentum tensor

Tµν = (e+ p)uµuν + pgµν (1.111)

There are many alternative approaches in the literature to the way the action is written, and the field equations are
derived. Brown (1993, Class.Quant.Grav. 10 1579) uses fully unconstrained perturbations and enforces all the
constraints (including those on the Lagrangian coordinates) using Lagrangian multipliers. At the other extreem
Hawking and Ellis (“The large scale structure of space-time” Sec 3.3 Pag 64, 1973) adopt variations that enforce
all the constraints by contruction, and use an action without any Lagrangian multipliers.



16 RELATIVISTIC HYDRODYNAMICS

1.9 Simple Equilibria in a gravitational field

We want to investigate in this section what are the equations that define the structure of a fluid in equilibrium in a
given time independent graviational field, which we describe providing the corresponding metric tensor. We will
use Euler equation in the form given by Eq. 1.82, applied to two cases of interest.

1.9.1 Plane-parallel atmosphere

Let us take a plane parallel configuration with a line element given by:

ds2 = −α(z)2dt2 + [dx2 + dy2 + dz2] (1.112)

corresponding to a graviational field with an acceleration directed along z. This does not necessarely correspond
to a simple plane parallel case, but it is possible to show that in any time independent spherically symmetric
spacetime, the line element can always be written in this form with z → r. Now for a flow at rest vµ = 0⇒ uµ =
α−1[1, 0, 0, 0], and uµ = α[−1, 0, 0, 0], such that one has:

aκ = uµ[∂µuκ − Γσµκuσ] = −uµ[∂µα− Γoµκα] = −∂tα
α

+
∂zα

α
= +∇z lnα (1.113)

uµ∇µp = −∂tp
α

= 0. (1.114)

Hence:

(
ρ+

Γ

Γ− 1
p

)
az =

(
ρ+

Γ

Γ− 1
p

)
∇z lnα = −∇zp. (1.115)

This same result can be obtained from Eq. (1.78), recalling that for a fluid at rest W = pγ, implying ∇̃ · (αW) =
p∇̃α+ α∇̃p, and taking the j = z component:

p
α∂zα+ ∂zp = −(ρhγ2 − p)∂j lnα

∂zp+ ρh∂z lnα = 0. (1.116)

For the special case of an ideal iso-entropic gas, recalling the definition of the specific enthalpy h = 1+Γp/ρ(Γ−1),
which implies∇p = ρ∇h, one finds that Eq. (1.115) can be written in intergal form:

(
ρ+

Γ

Γ− 1
p

)
az +∇zp =

∇zh
h

+∇z lnα⇒ αh = α

(
1 +

Γ

Γ− 1

p

ρ

)
= const = B , (1.117)

where the constant B, is known as Bernoulli integral.

1.9.2 Axisymmetric potential

In most astrophysical situations where the strong field regime applies, the space-time metric is due to the presence
of a rapidly rotating compact object. This is the case of rotating Black Holes (BHs) and/or Neutron Stars (NSs). In
these systems the flow itself rotates. Think of accretion disks around BHs or of the rotating NS matter in its own
gravitational field. It can be shown that the solution of Einstein equations for a time independent matter/energy
distribution endowed with angular momentum, gives a metric whose line element can be written as:

ds2 = −α(r, z)2dt2 + ψ(r, z)4[dr2 + dz2] +R2(r, z)[dφ− ωdt]2 (1.118)

where we have adopted cylindrical coordinates [r, z, φ], appropriate for axisymmetric geometry, ψ is a conformal
factor for the 2-metric in the meridional plane, R is a generalized cylindrical radius, and ω = −βφ represents the
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frame dragging. In this space-time we are looking for axisymmetric equilibria (∂t = ∂φ = 0).

For a rotaiting fluid the only non vanishing component of the velocity is the azimuthal one, and we can write:

vφ = (Ω−ω)
α vφ = R2 (Ω−ω)

α (1.119)
uµ = γ

α [1, 0, 0,Ω] uµ = γ
α [−α2 − ωR2(Ω− ω), 0, 0, R2(Ω− ω)] (1.120)

where γ = (1 − vφvφ)−1/2 is the Lorentz factor, and Ω is the rotation rate (in general dependent on position).
Then, in Eq. (1.82), the term uµ∇µp = 0.

It can be shown with some lengthy algebra, including the computation of various Christoffel symbols, that:

aφ = uo[Γooφuo + Γφoφuφ] + uφ[Γoφφuo + Γφφφuφ] = 0 (1.121)

ao = uo[Γooouo + Γφoouφ] + uφ[Γoφouo + Γφoφuφ] = 0 (1.122)

ar = uo[Γorouo + Γφrouφ] + uφ[Γoφruo + Γφrφuφ] = uouφ∇rΩ−∇r lnuo (1.123)

az = uo[Γozouo + Γφzouφ] + uφ[Γoφzuo + Γφzφuφ] = uouφ∇zΩ−∇z lnuo, (1.124)

such that Eq. (1.82) reduces to:(
ρ+

Γ

Γ− 1
p

)
[uouφ∇Ω +∇ lnα−∇ ln γ] +∇p = 0 (1.125)

As was done for the derivation of Eq. (1.117), recalling again the definition of the specific enthalpy, and assuming
an iso-entropyc fluid, also Eq. (1.125) can be written in a more compact form as:

(Ω− ω)R2γ2

α2
∇Ω +∇ ln

(
αh

γ

)
= 0. (1.126)

One can arrive to this same form of the equilibrium condition starting from Eq. (1.78), adopting now the definition
of flow velocity given above in Eq.s (1.119)-(1.120). One has Mr = Mz = 0, Mφ = ρhγ2vφ, and W =
ρhγ2vv + pγ. Taking the j = r, z components, the momentum equation reads:

1
αRψ4 ∂j(αRψ

4p) = ρhγ2

2 [vφvφ∂jR
2] + p

2 [2
∂jψ

4

ψ4 +
∂jR

2

R2 ]− ρhγ2vφ∂jω − (ρhγ2 − p)∂j lnα (1.127)

∂jp+ ρhγ2∂j lnα− ρhγ2

2 ∂j(R
2vφvφ) = ρhγ2

[
Rvφ∂jv

φ +
vφ
α ∂jω

]
(1.128)

∂jp+ ρh∂j lnα− ρhγ2

2 ∂j(v
φvφ) =

ρhγ2vφ
α ∂j(αv

φ + ω) (1.129)

∂jp+ ρh
[
∂j lnα− ∂j ln γ + γ2R2(Ω−ω)

α ∂jΩ
]

= 0 (1.130)

In order for Eq. (1.126) to allow an integral form, one must assume that the coefficient multiplying∇Ω is also just
a function of Ω. Note that the coefficient has the dimension of a specific angular momentum. One of the simplest
choice is to assume it to be equal toA(Ωref−Ω) with Ωref a reference (constant) angular velocity, andA a constant.
Then one has:

∇ ln

(
αh

γ

)
− A

2
(Ωref − Ω)2 = const = B (1.131)

The relation γ2R2(Ω− ω) = Aα(Ωref −Ω) defines the generalized von Zeipel cylinders: the surfaces of constant
Ω. Indeed in the limit of flat metric α→ 1, R→ r, and ω → 0 one has Ω = Ω(r).

1.10 TOV equations

The generalization of the Lane-Emden equation to the general relativistic regime requires the solution of Einstein
Equations:

Rµν − 1

2
gµνR = Gµν =

8πG

c
Tµν (1.132)
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where Gµν is the Einstein tensor given in terms of the Ricci tensor Rµν , the Ricci scalar R, and the metric tensor
gµν , while Tµν is the Energy-Momentum tensor describing the matter/energy distribution. For convenience, in
the following we will use units with c = 1.To describe a non-rotating, spherically symmetric NS one searches for
solutions that are stationary (∂t = 0) and isotropic (quantities depend only of the radius r).

1.10.1 Stationary isotropic metric

We begin by showing what is the general form for a stationary and spherically symmetric space-time metric. These
conditions imply that the line element cannot depend explicitly on time, but only on dt, while the spatial part must
depend only on the rotational invariants r2 = x · x, dx · x, and dx · dx:

ds2 = A(r)dt2 + 2B(r)dtdx · x + C(r)(dx · x)2 +D(r)dx · dx (1.133)

Adopting the general spherical coordinates er, eθ, eφ, with x = [r, 0, 0], and dx = [dr, rdθ, r sin θdφ], the line
element can be written as:

ds2 = A(r)dt2 + 2B(r)dt(rdr) + C(r)(rdr)2 +D(r)(dr2 + r2dθ2 + r2 sin2 θdφ2) (1.134)

The dtdr term can be eliminated by doing the following transformation dt→ dt−rB(r)/A(r)dr, which is simply
a redefinition of the time coordinate t→ t+K(r) wirth dK(r)/dr = −rB(r)/A(r).

ds2 = A(r)dt2 − E(r)dr2 +D(r)r2(dθ2 + sin2 θdφ2) (1.135)

with E(r) = −r2[D(r)−B(r)2/A(r)]. The two-metric associated with dθ and dφ can always be orthonormalized
with the transformation r → −rD(r)−1/2 leading finally to:

ds2 = A(r)dt2 − E(r)dr2 − r2(dθ2 + sin2 θdφ2) (1.136)

1.10.2 TOV equilibrium

It is convenient to put g00 = A(r) = e2ν(r) and grr = −E(r) = −e2λ(r). Then, recalling the definition of the
Riemann tensor in terms of the affine connection, Rµν = Γαµα,ν − Γαµν,α − ΓαµνΓβαβ + ΓαµβΓβνα, and the Ricci
scalalar R = gµνRµν , one can write down Einstein field equations. The only non vanishing connections are:

Γrtt = ν′e2(ν−λ), Γrrr = λ′, Γrθθ = −re−2λ, Γrφφ = −r sin2 θe−2λ, (1.137)

Γtrt = ν′, Γθrθ = Γφrφ = 1/r, Γφφθ = cos θ/ sin θ, Γθφφ = − sin θ cos θ. (1.138)

(1.139)

where ′ indicates derivatives with respect to r. The Riemann tensor and Ricci scalar read:

Rtt = (−ν′′ + λ′ν′/− ν′2 − 2ν′/r)e2(ν−λ), Rrr = ν′′ − λ′ν′ + ν′2 − 2ν′/r (1.140)

Rθθ = (1 + rν′ − rλ′)e−2λ − 1, Rφφ = sin2 θ[(1 + rν′ − rλ′)e−2λ − 1] (1.141)

R =

[
−2ν′′ + 2ν′λ′ − 2ν′2 − 2

r2
+ 4

λ′

r
− 4

ν′

r

]
e−2λ +

2

r2
(1.142)

On the other hand the stress energy tensor for an isotropic fluid is: Tµν = (ε + p)uµuν + pgµν where ε is the
energy density, p the pressure, uµ the four velocity, which in the case of a stationary configuration reduces to
uµ = [1/

√
gtt, 0, 0, 0].

Then, Einstein field equations are written:

Gtt = (1/r2 − 2λ′/r)e−2λ − 1/r2 = 8πGT tt = −8πGε(r), (1.143)

Grr = (1/r2 + 2ν′/r)e−2λ − 1/r2 = 8πGT rr = 8πGp(r), (1.144)

Gθθ = Gφφ = (ν′′ + ν′2 − λ′ν′ + ν′/r − λ′/r)e−2λ − 1/r2 = 8πGT θθ = 8πGp(r). (1.145)
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Choosing units with G = 1 one can solve Eqs. 1.143-1.144 to find:

2rλ′ = −(1− 8πr2ε)e2λ + 1, 2rν′ = (1 + 8πr2p)e2λ − 1 (1.146)

Taking the derivative of the second one :

2rν′ + 2r2ν′′ =
[
2rλ′(1 + 8πr2p) + (1 + 16πr2p+ 8πr3p′)

]
e2λ (1.147)

⇒ 2r2ν′′ = 1 + (16πr2p+ 8πr3p′)e2λ − (1− 8πr2ε)(1 + 8πr2p)e4λ (1.148)

Moreover Eq.1.143 can be rewritten as:

d

dr
[r(1− e−2λ)] = 8πr2ε ⇒ e−2λ = 1− 2M(r)

r
with M(r) = 4π

∫ r

o

εr2dr (1.149)

Outside the star the quantityM is a constant, that in the weak field limit coincides with the Newtonian gravitational
mass of the star.

Substituting the value of ν′′, ν′ and λ′ in Eq. 1.145 one finds:

4πr2[(3p− ε+ 2rp′) + (ε+ p+ 8πr2p(p+ ε))e2λ] = 16πr2p (1.150)

⇒ p′ = − (ε+ p)[e2λ − 1 + 8πr2pe2λ]

2r
(1.151)

and finally usign Eq. 1.149:

dp

dr
= − [p(r) + ε(r)][M(r) + 4πr3p(r)]

r(r − 2M(r))
(1.152)

This is the so called TOV equation. Together with Eq. 1.149 and a polytropic equation of state ε(p) can be
solved to derive the stellar structure in the General Relativistic regime. The above equation closely resembles the
Newtonian self gravitating hydrostatic equilibrium: the local density is substituted by a generalized energy density
[p(r) + ε(r)], the gravitational mass by a generalized mass [M(r) + 4πr3p(r)], and the 1/r2 term by a curvature
corrected function r(r − 2M(r)).

1.11 Relativistic sound speed & gravitational stability

Let us here investigate how a fluid at rest, in equilibrium, behaves in the presence of small perturbations. Given
that we will take a local approach, in the so called small wavelengths limit, we will include the effect of gravity,
assuming that the local line element can be written in the form:

ds2 = −α(z)2dt2 + [dx2 + dy2 + dz2] (1.153)

where α ' 1, and ∂zα/α = −gz corresponds to a gravitational acceleration in the z−direction. Note that the
spatial part of the metric tensor is flat. A metric of this kind is known as conformally flat. As already discussed in
Sect.(1.9.1), it can be shown that any time-inependent, spherically symmetric space-time (for example the space-
time of a non rotating Black Hole or Neutron Star), is conformally flat, and it is always possible to write the line
element in the form shown above (with z → r).

Let us consider a fluid, at rest, where the various quantities are perturbed with respect to an equilibrium con-
figuration (qb, the background state) with perturbations of the form:

q = qb(x, y, z) + ε(δq)eωt−ikzz−ikxx (1.154)

with ε� 1, and where we have set ky = 0, because the x−axis can be arbitrarily chosen such that the wave-vector
k sits in the x − z plane. We will also assume an ideal gas EoS, where pressure and internal energy density are
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related as p = (Γ − 1)e, and the entropy is s = ln (p/ρΓ). The various equations can be separated into a 0−th
order and 1−st order part with respect to ε. The 0−th order part is assumed to hold and provides just the structure
of the background (qb). The mass conservation, and entropy conservation (which can be used instead of the energy
conservation) read respectively:

∇µ(ρuµ) = [∇µ(ρuµ)b] + ε[ρb∇µδuµ + δρ∇µuµb + uµb∇µδρ+ δuµ∇µρb] = 0 (1.155)
⇒ [ρb∇µδuµ + uµb∇µδρ+ δuµ∇µρb] = 0 (1.156)

uµ∇µ(s) = [uµb∇µ(sb)] + ε[uµb∇µδs+ δuµ∇µsb] = 0 (1.157)
⇒ [uµb∇µδs+ δuµ∇µsb] = 0 (1.158)

where for a fluid a rest uµ = α−1[1, 0, 0, 0], uµ = α[−1, 0, 0, 0], such that∇µ(uµ)b = 0. The first order mometum
equations Eq. (1.82), with l = x, y, z, read:(

δρ+
Γ

Γ− 1
δp

)
al +

(
ρb +

Γ

Γ− 1
pb

)
δal + ∂lδp = 0 (1.159)

where we recall that only az = ∂zα/α = −gz 6= 0, and for a fluid at rest in the metric of Eq. (1.153), one has:
δ(ulu

µ∇µp) = δul(u
o
b∂tpb) = 0. Then:(

δρ+
Γ

Γ− 1
δp

)
az +

(
ρb +

Γ

Γ− 1
pb

)
δaz + ∂zδp = 0 (1.160)(

ρb +
Γ

Γ− 1
pb

)
δax + ∂xδp = 0 (1.161)(

ρb +
Γ

Γ− 1
pb

)
δay = 0 (1.162)

Now uµuµ = −1⇒ δuµu
µ
b = 0⇒ δuo = δuo = 0, and:

δal = uµb [∂µδul + Γσlµδuσ] + δuµ[Γσlµubσ] = uob∂tδul + uobΓσloδuσ + δujΓoljubo = uob∂tδul

=
ωδul
α

, (1.163)

given that all the Christoffel symbols can be shown to be zero. Eq. (1.163) together with Eq. (1.162) implies
δuy = 0.

The final set of equations is:

uobωδρ+ δux[−ikxρb + ∂xρb] + δuz[−ikzρb + ∂zρb + ρb∂z lnα] = 0 (1.164)

uobω

[
δp

pb
− Γ

δρ

ρb

]
+ δux∂xsb + δuz∂zsb = 0 (1.165)(

ρb +
Γ

Γ− 1
pb

)
ω

α
δux − ikxδp = 0 (1.166)

azδρ+

(
ρb +

Γ

Γ− 1
pb

)
ω

α
δuz0 +

[
azΓ

Γ− 1
− ikz

]
δp = 0. (1.167)

Now this set of equations can be cast in a matrix form, for the vector of unknown perturbations δq = [δρ, δux, δuz, δp].
The dispersion relation can be obtained imposing that the deteminant of the matrix vanishes (otherwise only the
trivial solution δq = 0 is allowed). In the small wavelength approximation kx, kz →∞, one can neglect gradients
of background quantities: k � ∇qb/qb in the various coefficients that appear in the matrix. Then, using again the
specific enthalpy hb and recalling that uob = 1/α, the set can be written as:

ω
α −ikxρb −ikzρb + az 0

− Γω
αρb

∂xsb ∂zsb
ω
αpb

0 ρbhb
ω
α 0 −ikx

az 0 ρbhb
ω
α −ikz + azΓ

Γ−1



δρ

δux

δuz

δp

 = 0. (1.168)
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One can then compute the determinant. Retaining only coefficients to the highest order in k, one finds that the
dispersion relation reads:

ω4 + α2 Γpb

ρbhb
(k2
x + k2

z)ω2 + kxaz[k ∧∇sb]
α2Γpb

ρbhb

α2

Γhb
= 0, (1.169)

which can be simplified as:

ω4 + c2sk
2ω2 + [k ∧ a][k ∧∇s]c2s

α2

Γh
= 0 with c2s =

α2Γp

ρh
(1.170)

In the case of no gravity α = 1, a = 0, and no stratification, ∇s = 0, this reduces to the standard dispersion
relation for sound waves. The speed of sound is found to be:

cs =

√
Γp

ρ+ Γ
Γ−1p

(1.171)

Note that in the classical limit, p � ρ, this gives the standard sound speed for ideal fluids. More interesting,
even in the limit of a relativistically hot gas p � ρ, the sound speed saturates to

√
Γ− 1. Given that a gas of

relativistic Fermions has Γ = 4/3, this implies that the sound speed of ultrarelativistic non-interacting particles is
1/
√

3 ' 0.577c. Even very modestly relativistic outflows with γ ' 1.5 are already supersonic. On the other hand
fluids with Γ = 2 in the asymptotic limit have a sound speed that approaches the speed of light.

Let see what happens in a gravitational field. First note that the sound speed is reduced by a factor α, corre-
sponding to a gravitational redshift. Then the condition for stability (ω2 < 0) is:

[k ∧ a][k ∧∇s] = (az∇zs)k2
x + (ax∇xs)k2

z − [ax∇zs+ az∇xs]kxky ≥ 0 (1.172)

This is a relation of the kind Ax2 + Bxy + Cy2 ≥ 0, that is satisfield for all x, y only if A + C ≥ 0 and
B2 − 4AC ≤ 0. These two conditions translate into:

a ∧∇s = 0 a · ∇s = −g · ∇s ≥ 0 (1.173)

The entropy gradient must be parallel to the direction of the 4-acceleration, and must point in the opposite direction
with respect to the graviational acceleration gz . This is the general relativistic version of the Schwarzschild criterion
for stability.

1.12 Shocks

A shock is an abrupt discontinuity in the flow field. It occurs in flows when the local flow speed exceeds the
local sound speed. As a consequence any disturbance which propagates at the speed of sound cannot adjusts the
remaining flow field accordingly, and this results in an abrupt change of properties.

Due to the discontinuous nature of the fluid quantities at the shock, the equations of fluid dynamics that we have
developed in the previous sections, and that are written in terms of derivatives, cannot be used (derivatives are
not defined at shocks). It is possible however to generalized those equations, in a conservative integral form, that
applies also to discontinuous flows.

Eq.s (1.59)-(1.69)-(1.79) are all of the form:

∂U
∂t

+∇ ·F + S = 0. (1.174)
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One can integrate them over a small volume across the shock front. For simplicity we will assume that the shock
normal points along the x−axis (given that a shock is a local discontinuity, it is always possible to do a Lorentz
transformation to a local frame moving with the shock), with the origin located at the shock position, and that the
flow crosses the shock from the region x < 0, called upstream region, to the region x > 0, called downstream
region. Then the integrated equation reads:∫ ε

−ε

∂U
∂t

dx+

∫ ε

−ε
(∇ · F)dx+

∫ ε

−ε
Sdx = 0 (1.175)

In the limit ε → 0 the first and last term also go to zero, because the fluid variables and the metric terms, even if
discontinuous are still bound. The second term (formally an integral of a Dirac’s delta function) does not vanish
and, using Stoke’s Theorem, can be written as an integral over the boudary:∫ ε

−ε
(∇ · F)dx = Fd −Fu = 0 (1.176)

where we have indicated with subscripts u and d the values upstream (x = −ε) and downstream (x = ε) of the
shock respectively. For simplicity we will just consider the case of a local flat spacetime (α = 1, γij = δij , β

i = 0),
recalling that is it always possible in general relativity to do a trasformation to a local Minkowsky frame, with the
y−axis aligned with the transverse component of the flow velocity. From Eq.s (1.59)-(1.69)-(1.79) one gets the
following Relativistic Rankine-Hugoniot shock jump conditions:

[ργvx]u = [ργvx]d = jρ (1.177)
[ρhγ2vxvy]u = [ρhγ2vxvy]d (1.178)

[ρhγ2vxvx + p]u = [ρhγ2vxvx + p]d (1.179)
[ρhγ2vx]u = [ρhγ2vx]d (1.180)

where we have introduced the invariant mass flux jρ. One can then recast the Rankine-Hugoniot condition in the
following form:

vxd − vxu = jρ

(
1

[ργ]d
− 1

[ργ]u

)
(1.181)

[γhvy]d = [γhvy]u (1.182)
pd − pu = −jρ ([hγvx]d − [hγvx]u) (1.183)

[hγ]d = [hγ]u (1.184)

Eq. (1.183) can be solved for vd as a function of the post shock pressure, using condition Eq. (1.184), as:

vxd =

[
huγuv

x
u −

(pd − pu)

jρ

]
[huγu]−1 (1.185)

while for the transverse velocity one has vyd = vyu. By making use of the relations:

hu

ρu
[pd − pu] = (γuv

x
u)2h2

u − γuγdv
x
uv

x
dhuhd (1.186)

hd

ρd
[pd − pu] = −(γdv

x
d)2h2

d + γuγdv
x
uv

x
dhuhd (1.187)

h2
dγ

2
d − h2

uγ
2
u = 0 (1.188)

one finds: (
hu

ρu
+
hd

ρd

)
[pd − pu] = (γuv

x
u)2h2

u − (γdv
x
d)2h2

d = h2
d − h2

u (1.189)

Recalling that for an Ideal gas the following relation holds:

ρd =
Γpd

(Γ− 1)(hd − 1)
(1.190)
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one can then solve Eq. (1.189) for the post shock enthalpy hd, as a function of the post shock pressure:

h2
d

(
1 +

(Γ− 1)[pu − pd]

Γpd

)
− (Γ− 1)[pu − pd]

Γpd
hd +

hu[pu − pd]

ρu
− h2

u = 0 (1.191)

which is known as Taub’s adiabat.

Now let us consider a cold (pu → 0, hu → 1) ultrarelativistic (γu � 1, vxu = vu = 1 − 1/2γ2
u) flow cross-

ing a stationary shock, with purely normal speed (vyu = 0). The downstream pressure will be normalized to the
upstream momentum, as suggested by Eq. (1.179): pd = cpρuγ

2
u. Then the physical solution of the Taub’s adiabat

is:

hd =
1

2

(
1− Γ +

√
(1 + Γ)2 + 4Γ

pd

ρu

)
→
√
cpΓγu for γu →∞ (1.192)

On the other hand the solution for the downstream post shock velocity, in the same regime, will be

vd =
ρu + 4γ4

uρu − 4γ2
u(pd + ρu)

2γ2
u(2γ2

u − 1)ρu
→ 1− cp for γu →∞ (1.193)

which implies that 0 < cp < 1. Then, recalling Eq. (1.190) the mass conservation law gives the following
condition:

ρuγuvu = ρdγdvd =
Γpd

(Γ− 1)(hd − 1)

vd√
1− v2

d

→ −
(cp − 1)

√
cpΓ

(Γ− 1)
√
cp(2− cp)

ρuγu for γu →∞ (1.194)

Then, recallig that Eq. (1.193) constrains the value of cp to be less than one, the post shock pressure is given by
imposing the first equality in the above equation:

(cp − 1)
√
cpΓ

(Γ− 1)
√
cp(2− cp)

= −1 ⇒ cp = 2− Γ (1.195)

Then the ultrareativistic shock jump conditions are:

pd = (2− Γ)ρuγ
2
u, vd = Γ− 1, ρd =

√
(2− Γ)Γ

Γ− 1
ρuγu (1.196)

Note that pd � ρd and, recalling Eq. (1.171), one finds vd = Γ − 1 <
√

Γ− 1 = cs, confirming that the post
shock flow is always subsonic.

1.13 Rarefaction waves

A shock is a non linear wave, that connects a state at lower pressure and density to a state at a higher pressure
and density. Despite the equations for the jump being invariant for the transformation vx → −vx, as in the non
relativistic case, the second principle of thermodynamics ensures that only transitions to higher pressures are phys-
ically acceptable.

Transition to lower pressure and density states happen via what are known as rarefaction waves. Rarefaction
waves are self similar solutions of the equations of relativistic fluid dynamics where the various fluid quantities
do not change in time and space independently but as a function of a self similar variable. For simplicity, as in
the case of shocks, we will assume that the wave propagates along the x-axis, and that all fluid variables depend
only in the time t and the coordinate x through the self-similar variable ζ = x/t (i.e. ρ = ρ(x ± ζt) etc...). We
wil also assume that the transverse components of the velocity vy and vz vanish. Then ∂t = −ζ∂ζ/t ans ∂x = ∂ζ/t.
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Entropy conservation becomes:

uµ∇µs = 0 ⇒ ∂ts+ vx∂xs = (vx − ζ)∂ζs = 0 ⇒ ∂ζs = 0 (1.197)

The 1 dimensional mass conservation becomes:

∂t(γρ) + ∂x(γρvx) = −ζ
t
∂ζ(γρ) +

1

t
∂ζ(γρv

x) = 0

⇒ −ζ∂ζ(γρ) + ∂ζ(γρv
x) = 0

⇒ (vx − ζ)∂ζ(γρ) + γρ∂ζv
x = 0

⇒ (vx − ζ)∂ζρ+ (vx − ζ)ρ∂ζ(γ)/γ + ρ∂ζv
x = 0

⇒ (vx − ζ)∂ζρ+ ρ[γ2(vx − ζ)vx + 1]∂ζv
x = 0 (1.198)

where we have used the relation dγ/dv = γ2v.

In the same way the1-dimensional momentum conservation equation becomes:

∂t(γ
2ρhvx) + ∂x(γ2ρhvxvx) + ∂xp− γhvx[∂t(γρ) + ∂x(γρvx)] = γρ[∂t(γhv

x) + vx∂x(γhvx)] + ∂xp = 0

⇒ (vx − ζ)γρ∂ζ(γhv
x)− ∂ζp = 0

⇒ (vx − ζ)γρh∂ζ(γv
x) +[(vx − ζ)γ2vx + 1]∂ζp = 0

⇒ (vx − ζ)γρh∂ζ(γv
x) +γ2(1− ζvx)∂ζp = 0

⇒ (vx − ζ)γ2ρh∂ζv
x +(1− ζvx)∂ζp = 0 (1.199)

where in the third passage we have used the relation ρdh = dp and in the last passage d(γv)/dv = γ3.

Given Eq. 1.197, as long as the entropy does not change, dp/dρ = Γp/ρ = c2sh and we can do the substitu-
tion ∂ζp = c2sh∂ζρ. Then Eq.s 1.198-1.199 can be cast in the compact matrix form:(

(vx − ζ) ρ[γ2(vx − ζ)vx + 1]

(1− ζvx)c2sh (vx − ζ)γ2ρh

)(
∂ζρ

∂ζv
x

)
= 0. (1.200)

which admits non trivial solutions only if the determinant is zero, leading to:

c2s =

(
vx − ζ
1− ζvx

)2

⇒ ζ =
vx ± cs
1± vxcs

(1.201)

if the rarefaction wave propagated in a medium at rest vx = 0 its leading front will have ζ = cs ⇒ x = cxt, i.e.
will propagate at the speed of sound in the unperturbed medium at rest. The tail front of the wave instead will be
given by ζ = (cs − v)/(1 − csv) where v and cS are the speed and sound speed of the fluid in the wave, i.e. the
condition ζ = (cs − v)/(1− csv) defines the tail of the wave.

1.13.1 The Rienmann Problem

Il fluid-dynamics by Rienmann problem or by Rienmann solution we mean the evolution of a 1-dimensional system
formed by a left and a right initial uniform state, separated by a contat discontinuity, with different values of the
various fluid quantities (Fig. 1.1). The result is the formation of an intermediate region with intermediate left
and right state separated by a contact discontinuity. Across this contact discontinuity in the intermediate region,
pressure and velocity must be the same.

Then right unperturbed state will be connected to the right intermediate region by either a shock or a rarefaction
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Figure 1.1 Scheme for the Rienmann problem

wave, depending if the pressure in the intermediate right region is higher or lower than in the unperturbed state.
The same applies to the left intermediate region, connected to the left unperturbed one (Fig. 1.1).

In practice to solve the Rienmann problem one needs to find what kind of waves (either shocks or rarefactions)
must connect the intermediate states to the unperturben ones, on the left and right side, such that across the contact
discontinuity pressure and velocity are the same.

1.14 Spherical Inflow - Outflows

We will investigate in this section the behaviour of relativistic inflows and outflows, both in the simple case of
supersonic winds, and in the more complex case of thermally driven flows in a gravitational potential.

Let us consider the case of a radial outflow vθ = vφ = 0, in a space-time with diagonal metric βi = 0. Re-
calling that in the case of a diagonal metricK = 0, the steady state (∂t = 0) Eq.s (1.59)-(1.69) give:

∂r[αγ̃
1/2ργvr] = 0 ⇒ αγ̃1/2ργvr = Ṁ = const (1.202)

∂r[αγ̃
1/2ρhγ2vr] + γ̃1/2[ρhγ2vr]∂rα = 0 ⇒ α2γ̃1/2ρhγ2vr = Ė = const (1.203)

where the first one defines the invariant mass flux, while the second one the invariant energy flux. One finds
immediately that:

αγh =
Ė

Ṁ
= const = B = γmax (1.204)

where the B is the generalized Bernoulli invariant, and in the case of outflows is equal to γmax, defined as the
maximum achiavable Lorentz factor that can be reached at r → ∞ when α → 1 and h → 1. The last equation
needed to close the system is the entropy conservation: p/ρΓ = Ka = const.
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1.14.1 Relativistic Winds

As it was shown, the sound speed, even for hot plasmas, is just a fraction of the speed of light, such that relativistic
winds can be safely assumed to be supersonic.

Let us consider the simple case of a spherical wind vr > 0 in a flat spacetime α = 1, γ̃ = r2 sin θ, where
vφ = vθ = 0 ⇒ θ = const, and one can safely take sin θ = 1. We will also assume an EoS with Γ = 4/3, ap-
propriate for a relativistically hot plasma. Then the steady-state equations, in the limit of highly relativistic motion
vr → 1 are:

ργr2 = const

[ρ+ 4p]γ2r2 = const (1.205)
p3/4γr2 = const

Before giving the complete solution let us first study these equations in two relevant limits: the energy dominated
regime p� ρ, and the matter dominated regime p� ρ. As long as the pressure is much larger than the density, one
can neglect the mass conservation in the dynamics, and set ρ+ 4p→ 4p. Then the second and third of Eq. (1.205)
imply:

γ2r2 ∝ p−1 ∝ γ4/3r8/3 ⇒ γ ∝ r, ρ ∝ r−3, p ∝ r−4 (1.206)

As the flow expands, it accelerates linearly and this phase is usually referred as free acceleration. Meanwhile
the ration p/ρ ∝ r−1 decreses, such that eventually the energy dominated regime will terminate and the matter
dominated regime will set in. Once the pressure becomes much smaller than the density one can neglect its
contribution in the second of Eq. (1.205): ρ+ 4p→ ρ. This, togheter with mass conservation, implies:

γr2 ∝ ρ−1 ∝ γ2r2 ⇒ γ = const, ρ ∝ r−2, p ∝ r−8/3 (1.207)

Now the Lorentz factor saturates to a constant, and the phase in known as coasting phase. This phase holds to any
radius given that p/ρ keeps decreasing.

We are going now to present the full solution. We will label with subscript i the value of the various fluid quantities
at injection. We will normalize the radius and Lorentz factor as r = ζri, and γ = gγγi. Moreover we will also
normalize the maximum Lorentz factor defined as in Eq. (1.204) as γmax = gmaxγi. Then one has:(

1 + 4
pi

ρi

)
γi = γmax ⇒ pi = ρi

gmax − 1

4
, (1.208)

and:

γρr2 = γiρir
2
i ⇒ ρ = ρi(gγζ

2)−1 (1.209)

ρ4/3p−1 = ρ
4/3
i p−1

i ⇒ p = pi (ρ/ρi)
4/3

= pi

(
gγζ

2
)−4/3

(1.210)

(1 + 4p/ρ) γ = γmax ⇒ gγ

[
1 + 4pi

(
gγζ

2
)−1/3

/ρi

]
= gmax (1.211)

This last one, together with Eq. (1.208), can be solved for gmax as:

gγ [1 + (gmax − 1)(gγζ
2)−1/3] = gmax ⇒ gmax = gγ

(gγζ
2)1/3 − 1

(gγζ2)1/3 − gγ
(1.212)

The solutions of the problem are provided by the isolevels of the function gmax(ζ, gγ) defined in Eq. (1.212). These
are shown in Fig. (1.2), where the free expansion and coasting phases are evident, together with the trasition regime
between the two which takes place at typical radii r ' gmaxri.
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Figure 1.2 Solution of the relativistic wind problem in the form of isolevels of the function gmax given in Eq. (1.212). Note
the linear gmax = ζ ⇒ γ ∝ r, as small radii.

1.14.2 Bondi Flow

We will now discuss the complete solution for an inflow-outflow problem in a stationary space-time endowed with
spherical symmetry. This solution is known as Bondi flow. In particular we will consider the Schwarshild metric in
the so called radial spherical coordinates, appropriate to descibe the metric outside a slowly rotating compact ob-
ject: gµν = diag[α2, α−2, r2, r2 sin2 (θ)], where the lapse function is α =

√
(1− 1/r), and the radius have been

normalized to the Schwarshild radius 2GM/c2. For simplicity, given that we are interested in spherical outflows we
can take θ = const = π/2, and we also introduce the ortho-normalized velocity v =

√
grrv

r → γ = 1/
√

1− v2,
and γ̃1/2vr = r2v. B has a different physical interpretation if one looks at the problem either from the point of
view of inflows or outflows. In an inflow problem, where conditions are usually known only at large distances, B
represents the ratio p/ρ at r → ∞, related to the sound speed and/or the temperature of the acccreating medium
(usually assumed cold at large distances). In an outflow problem, where conditions are usually known only at the
surface of the compact object or in its close vicinity, B represents the combination of the gravity at the injection
radius ri, given by α(ri), and the ratio p(ri)/ρ(ri), related to the local sound speed. In this case B generalizes the
ratio of sound speed over escape velocity at injection.

Combining Eq. (1.204) with mass conservation, and assuming an isoentropic flow p = Kaρ
Γ, one finds:

ΓKa

Γ− 1
Ṁγ−1 =

ΓKa

Γ− 1
(αr2vγρ)Γ−1 =

Γ

Γ− 1

p

ρ
(αr2γv)Γ−1 = (h− 1)(αr2γv)Γ−1 (1.213)

(
B
γα
− 1

)
(αr2γv)Γ−1 = K = const (1.214)

where K is an integral of motion. The isolevels of K(r, v) are the solutions of the problem. Instead of r and v one
can use a parametrization in terms of α and γ. In Fig. (1.3) we show the isolevels of K for a given value of B.
One recovers a structure similar to the inflow-outflow solution of non-relativistic fluid dynamics. There is a saddle
point, and the solution can be divided into four domains: two are unphysical because the flow return on itself (at
the same radius they admit two values for the velocity), one containing solutions that connects r = 1, v = 0 with
r = 1, v = 1, and the other solutions that connects r = ∞, v = 0 with r = ∞, v =

√
1− 1/γ2

max; other two
regions instead represent physically admissible solutions that connect r = 1 to r =∞.

The saddle point is given by the simultaneous conditions:
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Figure 1.3 Solution of the relativistic Bondi flow problem in the form of isolevels of the function K given in Eq. (1.214) for
B = 1.3. The dashed line is the sonic curve given by Eq. (1.216). The red curves represent the transonic solutions.

∂K
∂v

=
∂K
∂γ

= 0,
∂K
∂r

=
∂K
∂α

= 0. (1.215)

The first condition gives:

(B[1− γ2(2− Γ)]− αγ3(Γ− 1))(αr2
√
γ2 − 1)Γ−1

αγ2(γ2 − 1)
= 0 ⇒ α =

1 + γ2(Γ− 2)

γ3(Γ− 1)
B (1.216)

But from Eq. (1.214) we know that α = B/hγ, then:

1 + γ2(Γ− 2)

γ2(Γ− 1)
=

1

h
⇒ γ2 =

h

(Γ− 1) + h(2− Γ)
⇒ v2 =

(Γ− 1)(h− 1)

h
=

Γp

h
= c2s (1.217)

Eq. (1.216) defines the so called sonic curve, the locus of point where the flow speed is equal to the sound speed.
The saddle point is then a sonic point. The space of physical solutions below the sonic curve, represents the so
called subsonic breezes.

The second conditions of Eq. (1.215) instead gives:

αγ(1 + 3α2)(Γ− 1) + [2(1 + α2)− Γ(1 + 3α2)]B
α2(α2 − 1)γ

(
α
√
γ2 − 1

(α2 − 1)2

)Γ−1

= 0

⇒ γ =
Γ− 2 + α2(3Γ− 2)

α(Γ− 1)(1 + 3α2)
B (1.218)

which defines the so called gravitational throat curve. Eq. (1.216) together with Eq. (1.218) gives:

γ6(Γ− 1)2 − B2[4γ6(Γ− 2)2 − γ4(28− 20Γ + 3Γ2)) + γ2(16− 6Γ)− 3] = 0 (1.219)

This is a third order equation for γ2 that can be solved using standard tecniques (recalling that the only admissible
solution must satisfy 1 < γ < B). The solutions defines γtrs and αtrs, the speed and location of the saddle point.
From this, one can recover the value Ktrs that selects the solutions going through this point. Such value is nothing
else than the invariant mass flow of the transonic solution. There are the only two transonic solutions, that connect
r = 1 with r =∞, and they represent the physical solutions describing either the inflow from a medium that is at
rest at r =∞, or the outflow from a compact object with an injection speed that is subsonic. They are the general
relativistic extension of the classical Bondi flow and Parker wind. OnceKtrs is known Eq. (1.214) fully determines
the transonic solution as a function of r and v.
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Figure 1.4 Solution of the relativistic Bondi flow problem in the form of isolevels of the function K given in Eq. (1.214) for
B = 1.3. The dashed lines are the Taub shock adiabats defined by Eq. (1.220). The red curves represent the transonic solutions.
The purple curve represents a transonic shocked wind.

Obvioulsy once a solution becomes supersonic, either inside the saddle point for inflow, or outside for out-

flow, it can produce a shock. The accreation into a Black Hole does not require a shock, but in the presence of an
hard surface, like in the case of a Neutron Star, the flow must shock (it must match a zero speed at the surface, and
the solution must jump on curve where v → 0 as r → ri. Similarly a transonic outflow must also shock, because
the ambient medium is at rest and the solution must jump on a curve where v → 0 as r → ∞. The entropy is not
conserved at a shock, but the mass flux and adiabatic index are. Moreover, Eq. (1.184) guarantees that at a shock
also the Bernoulli invariant is conserved. So we expect the solution to jump to a curve with a different value of K,
but belonging to the space of solutions with the same B . The post shock value of K, can be determined requiring
that the new solution conserves at the jump mass flux and momentum flux. The conservation laws, being local, are
given by Eq.s (1.177)-(1.179). So, in the r − v space of Fig. (1.4) we can define the Taub adiabats, as the curves
connecting points that can be matched by a shock according to:

ρhγ2v2 + p

γρv
=

1

γv

[
B
α
γv2 +

Γ− 1

Γ

(
B
γα
− 1

)]
= const (1.220)

In Fig. (1.4) we show these curves and how they define the shock transition in an inflow-outflow problem.

1.15 Relativistic Explosions

When a large amount of energy is released suddenly in a small volume, the result is an explosion, i.e. a shock wave
that propagates through the surrounding medium. When the ratio of the released energy over the swept up mass
is smaller than c2 the dynamics is subrelativistic and the evolution of the shock wave is described by the standard
Sedov solution. It is possible to show that there is only one combination of the explosion energy E, the ambient
medium density ρo, and time t that has the dimension of a length. This combination gives the evolution of the
shock radius in time: Rs ' (E/ρo)

1/5t2/5.

If the ratio of the injected energy over the swept up mass is much larger than c2, or at least as long as it is,
the dynamics is relativistic. A shock propagates in the ambient medium at a large Lorentz factor γs � 1. In
Section 1.12, we investigated what happens to a relativiswtic flow as it crosses a stationary shock. In this case we
have a relativistic shock moving through a stationary medium. In the reference frame of the shock, the ambient
medium moves inward with a Lorentz factor γs, the post shock comoving density is ρd = 2

√
2γsρo, the post shock

comoving pressure is pd = 2γ2
s ρo/3, while the post shock speed is ṽ = −1/3, and we have assumed an adiabatic
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coefficient Γ = 4/3 appropriate for a hot relativistic gas. Transforming back to the laboratory frame, the comoving
post shock pressure and density remain the same (by definition), while the post shock speed trasforms according
to:

vd =
vs − 1/3

1− vs/3
⇒ γd = γs/

√
2. (1.221)

The density measured in the lab frame will be ργ ≈ ρdγd ≈ ρoγ
2
s . Now conservation of mass implies that the

swept up mass should be:

4π

∫ Rs

0

γρr2dr = 4π

∫ Rs

0

ρor
2dr ⇒ γ2

s ρoR
2
s δr ≈ ρoR3

s ⇒ δr ≈ γ−2
s Rs (1.222)

indicating that most of the material will be confined in very thin shell δr downstream of the shock itself.

1.15.1 Thin Shell Approximation

Given that most of the material is confined in a thin shell, it is possible to develope a simple model, neglecting
the internal shell structure. One can assume that density and pressure in the shell are constant and equal to the
respective post shock values. The evolution of the shock is then given by energy conservation. Recalling that for a
relativistically hot plasma e = 3p� ρ, energy conservation reads:

E = 4π

∫ Rs

0

γ24pr2dr = 16πγ2
d4pdR

2
s δr =

16

3

1

2
√

2
πR3

sγ
2
s ρo ⇒ Rs =

(
3
√

2E

8πρo

)1/3

γ−2/3
s ' t(1.223)

where the last relation come from the fact that the shock is higly relativistic. Then one has that γ2
s ∝ t−3. The

shock decellerate as expected, as it expands.

1.15.2 The Blandford-McKee Solution

The relativistic explosion admits an exact asymptotic solution in the limit γs → ∞, known as Blandford-McKee
Solution. We will present here the derivation. A discussed previoulsy the gas downstream of the shock is hot:
p� ρ, and relativistic: ⇒ e = 3p, such that ρh = 4p, and moves radially v = vr.

For convenience we introduce the convective derivative: d/dt = ∂t + v∂r, that describes the proper change of
a quantity as it moves with the flow, and we assume a flat spacetime. Then the equations describing the evolution
of the flow are the mass conservation Eq. (1.59):

∂

∂t
(γρ) +

1

r2

∂

∂r
(r2ργv) =

∂

∂t
(γρ) + v

∂

∂r
(ργ) +

ργ

r2

∂

∂r
(r2v) =

d

dt
(ργ) +

ργ

r2

∂

∂r
(r2v) = 0 (1.224)

⇒ d

dt
ln (ργ) +

1

r2

∂

∂r
(r2v) = 0 (1.225)

which together with entropy conservation for a fluid element d(pρ4/3)/dt = 0, gives:

4
d

dt
ln (ργ) =

d

dt
ln (ρ4γ4) =

d

dt
ln (p3γ4) = − 4

r2

∂

∂r
(r2v) = 0 (1.226)

This can be used in conjunction with the energy conservation Eq. (1.69), providing the last equation:

∂

∂t
(γ2ρh− p) +

1

r2

∂

∂r
(r2ρhγ2v) =

∂

∂t
(4pγ2) +

∂

∂t
p+ v

∂

∂r
(4pγ2) +

4pγ2

r2

∂

∂r
(r2v) = 0 (1.227)

d

dt
(4pγ2)− ∂

∂t
p− (pγ2)

d

dt
ln (p3γ4) = 0 (1.228)

γ2 d

dt
(4pγ2) + γ2 ∂

∂t
p− (pγ4)

d

dt
ln (p3γ4) = 0 (1.229)

4γ4 d

dt
(p) + 4pγ2 d

dt
(γ2)− 3γ4 d

dt
p− 2pγ2 d

dt
γ2 − γ2 ∂

∂t
p = 0 (1.230)

⇒ γ4 d

dt
(p) + 2pγ2 d

dt
(γ2) ⇒ d

dt
(pγ4) = γ2 ∂

∂t
p (1.231)
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Now Eq. (1.223) tells us that, in the limit γs → ∞, the Lorentz factor of the shock scales as γ2
s = γ2

ref(t/tref)
−3,

in terms of quantities defined at a reference time. The exact integration for the shock radius gives:

vs ' 1− 1

2γ2
s

⇒ Rs =

∫ t

0

[
1− 1

2γ2
s

]
dt =

∫ t

0

[
1− t3

2γ2
reft

3
ref

]
dt = t

[
1− 1

8γ2
s

]
(1.232)

To proceed to the integration of the flow structure downstream of the shock, we introduce a new variable that is
unity at the shock location and that allows us to zoom-in the thin shell where most of the matter is concentrated.
Our choice is of the form:

χ = 1 + ηγ2
s (1− r/Rs)→ γ2

s η(1− r/t) + (1− ηr/8t) for γ2
s � 1 (1.233)

which suggests taking the arbitrary constant η = 8, such that we can simplify:

χ = [1 + 8γ2
s ](1− r/t) (1.234)

The new variables that substiture r and t in the equations, will then be: γ2
s which is just a function of t, and χ,

which depends both on r and t, (also throught the implicit dependence of γ2
s ). We must rewrite Eq.s (1.225)-

(1.226)-(1.231), in terms of the new variables. The dynamical quantities, can be written in term of separable
variables and can be normalized to their post shock downstream values:

γ2 =
γ2

s

2
G(χ), ργ = 2

√
2γ2

s ρoH(χ), p =
2γ2

s ρo
3
F(χ) (1.235)

We begin by expanding the partial derivatives with respect to t and r. We find:

∂

∂r
=
∂χ

∂r

∂

∂χ
= −1 + 8γ2

s

t

∂

∂χ
(1.236)

∂

∂t
=
∂γ2

s

∂t

∂

∂γ2
s

+
∂χ

∂t

∂

∂χ
= −3γ2

s

t

∂

∂γ2
s

+

[
(1 + 8γ2

s )r

t2
+ 8

(
1− r

t

) ∂γ2
s

∂t

]
∂

∂χ
(1.237)

= −3

t

∂

∂ ln γ2
s

+
1

t

[
1 + 8γ2

2 − χ−
24χ

1 + 8γ2
s

γ2
s

]
∂

∂χ
= −3

t

∂

∂ ln γ2
s

+

[
1 + 8γ2

2 − 4χ
]

t

∂

∂χ
(1.238)

where in the last one we have again assumed the limit γ2
s → ∞. At this point we can also rewrite the convective

derivative:

t
d

dt
= −3

∂

∂ ln γ2
s

+

[
1 + 8γ2

2 − 4χ−
(

1− 1

2γ2

)
[1 + 8γ2

s ]

]
∂

∂χ
= −3

∂

∂ ln γ2
s

+

[
4

(
2

G
− χ

)]
∂

∂χ
(1.239)

then the convective derivatives of the logarithm of the various quantities are:

t
d

dt
ln (ργ) = t

d

dt
ln (2ρoγ

2
sH) = t

d

dt
ln γ2

s + t
d

dt
lnH = −3 + 4

(
2

G
− χ

)
∂

∂χ
lnH (1.240)

t
d

dt
ln (p) = t

d

dt
ln (2ρoγ

2
sF/3) = t

d

dt
ln γ2

s + t
d

dt
lnF = −3 + 4

(
2

G
− χ

)
∂

∂χ
lnF (1.241)

t
d

dt
ln (γ2) = t

d

dt
ln (γ2

s G/2) = t
d

dt
ln γ2

s + t
d

dt
lnG = −3 + 4

(
2

G
− χ

)
∂

∂χ
lnG (1.242)

Finally we have the following auxiliary terms:

t

γ2

∂

∂t
ln (p) =

2t

γ2
s G

(
∂

∂t
ln γ2

s +
∂

∂t
lnF

)
=

2

γ2
s G

(
−3 + [1 + 8γ2

s − 4χ]
∂

∂χ
lnF

)
=

=
16

G
∂

∂χ
lnF (1.243)

t
∂

∂r
v = t

∂

∂r

(
1− 1

2γ2

)
= −t ∂

∂r

(
1

γ2
s G

)
= − 8

G
∂

∂χ
lnG (1.244)

2v
t

r
= 2

(
1− 1

γ2
s G

)
1 + 8γ2

s

1 + 8γ2
s − χ

= 2 (1.245)
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At this point we have all the terms necessary to rewrite the initial equations as a set of partial differential equations
in the new variables γs and χ. We begin with Eq. (1.225):

tG
(
d

dt
ln (ργ) +

1

r2

∂

∂r
(r2v)

)
= −3G + 4(2− Gχ)

∂

∂χ
lnH− 8

∂

∂χ
lnG + 2G = 0

⇒ 4(2− Gχ)
∂

∂χ
lnH− 8

∂

∂χ
lnG = G (1.246)

then Eq. (1.226):

tG
(
d

dt
ln (p3γ4) +

4

r2

∂

∂r
(r2v)

)
= −15G + 4(2− Gχ)

[
3
∂

∂χ
lnF + 2

∂

∂χ
lnG

]
− 32

∂

∂χ
lnG + 8G = 0

⇒ 12(2− Gχ)
∂

∂χ
lnF − 8(2 + Gχ)

∂

∂χ
lnG = 7G (1.247)

and finally Eq. (1.231):

tG
(
d

dt
ln (pγ4)− 1

γ2

∂

∂t
ln p

)
= −9G + 4(2− Gχ)

[
∂

∂χ
lnF + 2

∂

∂χ
lnG

]
− 16

∂

∂χ
lnF = 0

⇒ 4(2 + Gχ)
∂

∂χ
lnF − 8(2− Gχ)

∂

∂χ
lnG = −9G (1.248)

These form a system o three equations for the three unknown corresponding to the derivative of the logarithm of
the three structure functions G, F , H. The solution is:

1

G
∂

∂χ
lnG =

17− 5Gχ
4(4− 8Gχ+ G2χ2)

(1.249)

1

G
∂

∂χ
lnF =

16 + Gχ
4(4− 8Gχ+ G2χ2)

(1.250)

1

G
∂

∂χ
lnH = − 38− 18Gχ+ G2χ2

4(Gχ− 2)(4− 8Gχ+ G2χ2)
(1.251)

One can easily verify that the solution satisfying the initial condition G = F = H = 1 in χ = 1 is:

G = χ−1, H = χ−7/4, F = χ−17/12 (1.252)

At this point we can repeat the computation done in Eq. (1.223), now including the correct internal structure, to
derive how γs changes in time.

E = 16π

∫ Rs

o

γ2pr2dr = 16π
1

2

2

3

∫ 1

χ(0)

ρoγ
4
sχ
−1χ−17/12r(χ)2 ∂r

∂χ
dχ

=
16π

3

∫ 1+8γ2
s

1

ρoγ
4
sχ
−29/12

(
1− χ

1 + 8γ2
s

)2

t2
t

1 + 8γ2
s

dχ

=
8π

17
ρoγ

2
s t

3 for γs →∞ (1.253)

hence:

γs =

(
17E

8πρo

)1/2

t−3/2 (1.254)

which differs from the result in Eq. (1.223), by just a factor ∼ 3.



CHAPTER 2

RELATIVISTIC MAGNETO-HYDRODYNAMICS

While relativistic hydrodynamics applies to those systems that are particle dominated but characterized by large
energy densities (think about the relativistic explosions or the thermal winds from compact objects), or large
Lorentz factors, in general magnetic fields are a key ingredient in relativistic astrophysical sources. This is due
to the fact that the magnetic field increases the efficiency of energy conversion (for example the conversion of the
rotational energy of a compact object into the kinetic energy of a wind), and is normally invoked to model typical
engines of relativistic outflows.

2.1 Covariant Formulation of Relativistic MHD

Following the same approach as discussed in Sect. (1.4) it is possible to extend the equations of relativisti fluid
dynamics to include the presence of an electromagnetic field. The electromagnetic field is described by the Fara-
day (antisymmetric) electromagnetic tensor Fµν , with the associated dual F ∗µν = 1

2ε
µνλκFλκ, where εµνλκ =

(g)−1/2[µνλκ] is the space-time Levi-Civita pseudo-tensor (εµνλκ = −(g)1/2[µνλκ]), with g = −det[gµν ] and
[µνλκ] is the alternating Levi-Civita symbol.

The electromagnetic field obeys Maxwell Equations:

∇µFµν = −Jν , ∇µF ∗µν = 0 = ∇µFνκ +∇κFµν +∇νFκµ (2.1)

here the first describes how the electromagnetic field depends on the 4-current Jν that describes the distribution
of the so called source term. In this form the equations are still fully covariant. The antisymmetry of the Faraday
tensor, together with Eq. (1.22), implies that the 4-current obeys the folowing conservation law:

∇νJν = −∇ν∇µFµν = −g−1/2∂ν∂µ(g1/2Fµν) = 0 (2.2)

Maxwell Equations are a set of 8 equations for 10 unknowns (6 from the antisymmetric Faraday tensor and 4 from
the 4-current), and require some form of constitutive relation between the fields and the currents to close the system.

We have shown that it is possible to decompose any tensor with respect to any arbitrary time-like 4-vector Uµ.
This can also be done for the Faraday tensor and its dual, recalling that both are antisymmetric:

Fµν = UµEν − UνEµ + εµνλκBλUκ (2.3)
F ∗µν = UµBν − UνBµ − εµνλκEλUκ (2.4)

Jµ = QUµ + Iµ (2.5)

We recall that sinceUµ is time-like, it can be thought of as the 4-velocity of an observer. The quantitiesEµ,Bµ and
Iµ belong to the orthogonal space to Uµ, and as such they are all space-like. As was done for the decomposition of
the fluid quantities, the various quantities of the tensor decomposition of the electromagnetic field, have a special
meaning for this observer:
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34 RELATIVISTIC MAGNETO-HYDRODYNAMICS

Eµ = UνF
µν is the electric field

Bµ = UνF
∗µν is the magnetic field

Q = −UνJν is the charge density

Iµ is the current density

We know that the electromagnetic field carries energy and momentum. It is possible to define an energy-momentum
tensor for the electromagnetic field starting from the Faraday tensor as:

Tµνem = FµλF
νλ − 1

4
(FλκFλκ)gµν (2.6)

Note that this is the only possible form of a symmetric tensor quadratic in the field, and invariant under space
inversion, that can be built from the Faraday tensor and the metric tensor. It is interesting at this point to write
explicitly the energy-momentum tensor. One has:

FµλF
νλ = (UµEλ − UλEµ + εµλ

σκBσUκ)(UνEλ − UλEν + ενλρτBρUτ ) (2.7)

= E2UµUν − EµEν + UµενλρτEλBρUτ + UνεµλρτEλBρUτ −BµBν +B2UµUν + gµνB2

FνλF
νλ = (UνEλ − UλEν + ενλσκB

σUκ)(UνEλ − UλEν + ενλρτBρUτ ) (2.8)
= 2B2 − 2E2

where we made use of the antisymmetry of the Levi-Civita pseudo tensor, we have introduce the square of the
electric field E2 = EµEµ and of the magnetic field B2 = BµBµ, and we have used the following contraction
properties of the Levi-Civita pseudo tensor:

εµλ
σκενλρτ = gµξgσζgκιεξλζιε

νλρτ = −gµξgσζgκι[δνξ δ
ρ
ζ δ
τ
ι + δτξ δ

ν
ζ δ
ρ
ι + δρξ δ

τ
ζ δ
ν
ι − δ

ρ
ξ δ
ν
ζ δ
τ
ι − δνξ δτζ δρι − δτξ δ

ρ
ζ δ
ν
ι ]

= −gµνgσρgκτ − gµτgσνgκρ − gµρgστgκν + gµρgσνgκτ + gµνgστgκρ + gµτgσρgκν

⇒ εµλ
σκενλρτBσUκBρUτ = gµνB2 +B2UµUν −BµBν (2.9)

ενλσκε
νλρτ = −2[δρσδ

τ
κ − δρκδτσ]

⇒ ενλσκε
νλρτBσUκBρUτ = 2B2 (2.10)

We can introduce the for convenience the rank-3 completely antisymmetric and purely orthogonal alternating
tensor εµνκ = εµνκλUλ. Recalling that for orthogonal tensors gµνT β1.....βm

α1...ν...αn = ∆µνT β1.....βm
α1...ν...αn , one can verify

the following relations and contractions with other orthogonal 4-vectors:

εµνκ = εµνκλU
λ = ε λ

µνκ Uλ = ∆µρ∆νσ∆κιε
ρσιλUλ = ∆µρ∆νσ∆κιε

ρσι (2.11)
⇒ εµνκV

κ = ∆µρ∆νσ∆κιε
ρσιV κ = ∆µρ∆νσε

ρσιVι (2.12)
⇒ εµνκV

νWκ = ∆µρ∆νσ∆κιε
ρσιV νWκ = ∆µρε

ρσιVσWι (2.13)

Then:

Tµνem = −EµEν + E2UµUν + UµενλρEλBρ + UνεµλρEλBρ −BµBν +B2UµUν +
1

2
[B2 + E2]gµν (2.14)

It is possible to rewrite the energy mometum tensor of the electromagnetic field in order to make evident its
decomposition into a parallel and orthogonal part with respect to Uµ, recalling that gµν = ∆µν − UµUν

Tµνem = UemU
µUν +QµemU

ν +QνemU
µ +Wµν

em (2.15)

with:

Uem =
1

2
[E2 +B2] Qµem = εµλρEλBρ Wµν

em =
1

2
[E2 +B2]∆µν − EµEν −BµBν (2.16)
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These terms have a physical meaning that is analogous to the one for the fluid quantities that was discussed in
Sect. (1.4). Uem is the energy density of the electromagnetic field measured by the observed with four velocity
Uµ; Qµem is the energy flux, measured by the same observer, which is also known as Poyting vector flux, and, as
it can be seen, is formally a cross product of magnetic and electric field; Wµν

em is the Maxwell stress tensor of
the electromagnetic field. Note that these quantities have always the same definition in terms of the magnetic and
electric field, independently of the observer.

2.1.1 The Lorentz Force

We know from classical electrodynamis, that the electromagnetic field interacts with the charges and currents,
and that such interaction is described by the Lorentz Force. The Lorentz Force, is not contained in the Maxwell
Equations, but can be derived from energy-momentum conservation.

∇µTµνem = ∇µ[FµλF
νλ]− 1

4
gµν∇µ(FλκFλκ)

= −JλF νλ + Fµλ∇µF νλ −
gµν

2
Fλκ∇µFλκ = JλF

λν + Fµλ∇µF νλ +
gµν

2
Fλκ[∇κFµλ +∇λFκµ]

= JλF
λν + Fµλ∇µF νλ +

gµν

2
Fλκ∇κFµλ +

gµν

2
Fκλ∇λFµκ = JλF

λν + Fµλ∇µF νλ + gµνFλκ∇κFµλ

= JλF
λν + Fµλ∇µF νλ + Fλκ∇κF νλ ⇒ ∇µTµνem = JλF

λν (2.17)

which defines the covariant Lorentz Force. It is evident that the energy-momentum of an electromagnetic field is
conserved only in vacuum Jµ = 0, while in the presence of charges and currents, the field can do work on the
matter.

2.1.2 The Ideal MHD condition

In Sect. (1.4.2) we showed that the second principle of thermodynamics, together with the covariant formu-
lation of the entropy conservation law, allows one to constrain the relation among the various projections of
the energy-momentum tensor. If the projection is done with respect to the comoving observer as defined in
Sect. (1.4), Uµ = uµ, then one can define the comoving electric and magnetic fields: Eµ = eν = uµF

νµ,
Bµ = bν = uµF

∗νµ; the comoving charge density Q = ρe = uµJ
µ, and comoving current density Iµ = jµ.

The energy-momentum tensor of the fluid and electromagnetic field is given by the sum of the two:

Tµν = Tµνmatter + Tµνem (2.18)

Where the matter component is the same as in Eq. (1.29), and the elecromagnetic part is given by Eq. (2.23).
Eq. (2.19) is modified as:

uµ∇µe+ e∇µuµ + qνuµ∇µuν +∇µqµ + wµν∇µuν = −uν∇µTµνem = −uνJλFλν = −eλjλ, (2.19)

It is evident the presence of the additional term eλjλ, representing the work done by the electromagnetic field on
the matter. The set of Eq.s (1.37)-(1.39) are the same with just this additional term. Then one has:

T∇µSµ = −qν
[
uµ∇µuν +

∇νT
T

]
− πµν∇µuν − (Π− p)∇µuµ − T∇µ

[
qµ

T
− hµ

]
+ eλjλ ≥ 0. (2.20)

Ideal fluids are those that satisfy∇µSµ = 0. On top of the constrains on the fliud part, now one has to require this
to hold also for any current distribution jµ. This is possible only if the comoving electric field vanishes eµ = 0.
This is known as Ideal MHD condition:

uµF
νµ = 0 (2.21)
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This equation provides a closure relation that allows one to integrate Maxwell equation, in time (i.e. it fixes the
current structure). Hence from Eq.s (2.15)-(2.16) one finds:

Tµνem = b2uµuν − bµbν +
b2

2
gµν (2.22)

Such that, in conjunction with Eq. (1.41), the total energy-momentum tensor will be:

Tµν = (e+ p+ b2)uµuν − bµbν +

(
p+

b2

2

)
gµν (2.23)

It is possible to define a specific magnetic enthalpy as: hm = h+ b2/ρ; and a total pressure as: ptot = p+ b2/2.

2.2 3 + 1 Formalism for ideal MHD

In Sect. (1.5) we have introduced the 3+1 formalism, that allows one to split the space-time into spacial and tem-
poral direction, and to expressd the law of relativistic hydrodynamics, in terms of temporal and spatial derivatives.
This allows one to recover the classical notion of quantities that vary separately in space and time. This approach
can be extended to Maxwell Equations, and to relativistic MHD.

2.2.1 3 + 1 Formalism for the EM Field

In the previous section we have shown that it is possible to Maxwell equations, the charge conservations law, and
the Lorentz force in term of projected quantities with respect to an observed with fourvelocity Uµ. For the eulerian
observer of the 3+1 formalism Uµ = nµ, define in Eq. (1.5). Now Eµ and Bµ are the electric and magnetic field
measured by the eulerian observer.

Now, in terms of projected quantities with respect to the eulerian observer, one has:

Fµν = nµEν − Eµnν + εµνλκBλnκ (2.24)
F ∗µν = nµBν −Bµnν − εµνλκEλnκ (2.25)
Jµ = qen

µ + Iµ (2.26)

with E0 = 0, B0 = 0, I0 = 0. One then defines the purely orthogonal rank-3 alternating tensor as εijk =
−ε0ijkn0 = γ̃−1/2[ijk] and εijk = γ̃1/2[ijk], with the contraction property: εijkεimn = δjmδ

k
n − δkmδjn.

2.2.1.1 Constraints We begin with the parallel (time) projection of the two Maxwell Equations Eq. (2.1):

nν∇µFµν = −Jνnν ⇒ α∇µ[−Eµ/α+ εµ0λ0Bλα] = −α∇µ[Eµ/α] = −qe

⇒ γ̃−1/2∂i[γ̃
1/2Ei] = qe ⇒ ∇̃ ·E = qe (2.27)

and:

nν∇µF ∗µν = 0 ⇒ α∇µ[−Bµ/α+ εµ0λ0Eλα] = −α∇µ[Bµ/α] = 0

⇒ γ̃−1/2∂i[γ̃
1/2Bi] = 0 ⇒ ∇̃ ·B = 0 (2.28)

These are respectively Gauss law for the electric field and charge density and the solenoidal condition for the
magnetic field, and they are the general reltivistic extension of the time independent Maxwell equations. Being
time independt, these can be considered just as constraints that the electrom-magnetic field must satify at all time.
It is known that if they are satisfied at any time, the remaining Maxwell equations, ensure hat thay will always
hold.
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2.2.1.2 Time evolution The other Maxwell Equation can be derived from the spatial (ν = i) components of the
covariant form. We begin with the equation for the dual, Eq. (2.1):

∇µF ∗µi = ∇µ[nµBi −Bµni − εµiλκEλnκ] = ∇µ[nµBi +Bµβi/α+ εµiλ0Eλα] = 0

⇒ ∂0(g1/2Bi/α)− ∂j(g1/2βjBi/α) + ∂j(g
1/2βiBj/α) + ∂j([jiλ]Eλα) = 0

⇒ ∂t(γ̃
1/2Bi) + [ijk]∂j(Ekα) + ∂j(γ̃

1/2[Bjβi −Biβj ]) = 0

⇒ ∂t(γ̃
1/2Bi) + [ijk]∂j(Ekα) + ∂j(γ̃

1/2[δjmδ
i
n − δimδjn]Bmβn) = 0

⇒ ∂t(γ̃
1/2Bi) + [ijk]∂j(Ekα) + [ijk]∂j(γ̃

1/2[knm]Bmβn) = 0

⇒ γ̃−1/2∂t(γ̃
1/2Bi) + εijk∂j(Ekα+ εknmB

mβn) = 0 (2.29)

That, in vector form, returns the general reltivistic version of the Faraday induction law:

γ̃−1/2∂t(γ̃
1/2B) + ∇̃ × [αE + (β ×B)] = 0 (2.30)

Proceeding in the same way for the the spatial (ν = i) components of the equation involving the source, Eq. (2.1):

∇µFµi = ∇µ(nµEi − Eµni + εµiλκEλnκ) = ∇µ(nµEi + Eµβi/α− εµiλ0Bλα) = qeβ
i/α− Ii

⇒ ∂0(g1/2Ei/α)− ∂j(g1/2βjEi/α) + ∂j(g
1/2βiEj/α)− ∂j([jiλ]Bλα) = g1/2[qeβ

i/α− Ii]
⇒ ∂t(γ̃

1/2Ei)− [ijk]∂j(Bkα) + ∂j(γ̃
1/2[Ejβi − Eiβj ]) = γ̃1/2[qeβ

i − αIi]
⇒ ∂t(γ̃

1/2Ei)− [ijk]∂j(Bkα) + ∂j(γ̃
1/2[δjmδ

i
n − δimδjn]Emβn) = γ̃1/2[qeβ

i − αIi]
⇒ ∂t(γ̃

1/2Ei)− [ijk]∂j(Bkα) + [ijk]∂j(γ̃
1/2[knm]Emβn) = γ̃1/2[qeβ

i − αIi]
⇒ γ̃−1/2∂t(γ̃

1/2Ei) + εijk∂j(−Bkα+ εknmE
mβn) = −αIi + qeβ

i (2.31)

This too can be cast in vector form, and provides the general reltivistic version of Ampere law:

γ̃−1/2∂t(γ̃
1/2E) + ∇̃ × [−αB + (β ×E)] = −αI + qeβ (2.32)

2.2.1.3 Ideal MHD Condition Finally let us write also the ideal condition Eq. (2.21) in the 3+1 formalism. We
begin with the parallel projection:

nµuνF
µν = nµ[nµEνuν − nνEµuν + εµνλκBλnκuν ] = −Eνuν = 0 (2.33)

The electric field is orthogonal to the flow velocity. Then the spatial components can be computed as before:

∆iµuνF
ν

µ = ∆iµ[nµE
νuν − nνEµuν + ε νλκ

µ Bλnκuν ] = γEi + εijkBjuk = 0 ⇒ Ei = −εijkBjvk

that in vector form reads:

E = −v ×B (2.34)

showing that the Ideal MHD condition reads in general relativity in the same form as it reads in non-relativistic
MHD. In Ideal GR-MHD the electric field can be considered as purely derived quantity. Only the evolution of the
magnetic field according to Eq. (2.30) needs to be followed, because the ideal MHD condition provides a sufficient
closure.

2.2.2 3 + 1 Formalism for GR-MHD

We can now extend the 3+1 formalism of relativistic hydrodynamics to include the presence of an electromagnetic
field. Eq. (2.16) provide us with the necessary decomposition of the energy-momentum tensor of the electromag-
netic field, with respect to any observer in terms of the electric and magnetic field measured by the same observer.
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This holds also for the eulerian observer. The mass conservation Eq. (1.59), is unchanged while the momentum
conservation law and the energy conservation law Eq.s (1.69)-(1.79), retain the same form, with a definition of the
energy density, mometum flux, and stress tensor that now include the contribution from the electromagnetic field:

U = ρhγ2 − p+
1

2
[E2 +B2] (2.35)

M i = ρhγ2vi + εijkEjBk (2.36)

W ij = ρhγ2vivj − EiEj −BiBj +

[
p+

E2 +B2

2

]
γij (2.37)

in vector and tensor form:

M = ρhγ2v +E ×B (2.38)

W = ρhγ2vv −EE −BB +

[
p+

E2 +B2

2

]
γ (2.39)

These, together with Eq. (2.30), and the ideal MHD closure Eq. (2.21), provide a full set for the evolution of the
fluid quantities and the electromagnetic field, as seen by the eulerian observer.

In Ideal MHD, given the antisymmetric properties of the dual farady tensor:

uµb
µ = uµuνF

∗µν = 0 (2.40)

then the relation between the magnetic field measured by the Eulerian observer B, and the comoving magnetic
field four-vector bµ is given by:

uµB
µ = uµnν [uµbν − uνbµ] = −nνbν = αb0 (2.41)

Bi = nν [uibν − uνbi] = γbi + (nνb
ν)ui = γbi − (αb0)ui (2.42)

2.3 Force Free MHD

In many high-energy astrophysical sources the energy of the electromagnetic field can exceed by many orders of
magnitude the mass of the plasma. In this case the dynamics is completely determined by the evolution of the field,
given that the inertia and the typical pressure due to the plasma are negligible. However, despite the negligible role
of the plasma, this can still provide enough charges to support the currents and ensure that the total Lorentz force
vanishes.

This regime is known as force free MHD or degenerate magnetodynamics, because, if one neglects the matter
component of the energy-momentum tensor, then energy-momentum conservation of the electromagnetic part im-
plies that the Lorentz force vanishes. The system relaxes to a state where the electromagnetic forces, that cannot
be balanced by the plasma, are zero. Using Eq. (2.26)-(2.24) one has:

∇µTµνem = JµF
µν = [qenµ + Iµ][nµEν − Eµnν + εµνλκBλnκ] = −qeEν − (EµIµ)nν + εµνλBλIµ (2.43)

The parallel (temporal) part gives the condition for energy conservation:

nν∇µTµνem = (EµIµ) = 0 ⇒ E · I = 0 (2.44)

while the orthogonal (spacial) part gives the force-free condition:

∆i
ν∇µTµνem = −ρeEi + εµiλBλIµ = 0 ⇒ ρeE

i + εijkIjBk = 0 ⇒ ρeE + I ×B = 0 (2.45)

This implies that the electric field is perpendicular to the magnetic fieldE ·B = 0. Recall that Eq. (2.9) tell us that
B2 − E2 is an invariant, and as such, if there exists an observer for whom the electric field vanishes, than B > E
for any other observer. It is then possible to define the so called drift velocity:

vidf =
εijkEjBk

B2
⇒ uνdf = Γdfn

ν + Γdfv
ν
df with Γdf = 1/

√
1− v2

df (2.46)
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The condition B > E ensures that this velocity never exceeds the speed of light, and can be though of as the
velocity defining the so called drifting observer. Then, one can evaluate the electric field measured by this observer:

Eµdf = uν dfF
µν = Γdf [n

µ(Eνvν df) + Eµ + εµνλBλvν df ] = Γdf [E
µ +B−2εµνλενσκE

σBλB
κ](2.47)

= [Eµ −B−2[δνσδ
λ
κ − δνκδλσ ]EσBλB

κ] = 0 (2.48)

The drift velocity corresponds to the velocity of an observer that sees no electric field in its own frame. The drifting
observer can be considered the effective comoving observer in force-free relativistic MHD. All the definitions in
the equations of the 3+1 relativistic magneto-hydrodynamics are still valid if one neglects matter contribution
(ρ, p → 0). Notice that, due to Eq.s (2.45) and (2.46), the three spatial vectors E, B, and vdf are all mutually
orthogonal. When the three-velocity in Eq. (2.46) is used, the equations for GRMHD remain unchanged, too.
However, the mass conservation law is now useless, while the energy equation is redundant. In particular, the
treatment of the metric terms and of their derivatives in the source part remains exactly the same.

2.3.1 The Pulsar Equation

In high energy astrophysics, quite often, one deals with outflows from strongly magnetized, and rapidly rotating
sources, like Black Holes and Neutron Stars. The secular evolution of these systems, due to torque and energy
losses, happens on typical timescales that are far longer than the typical light crossing time, or outflow time. One
can then describe the outflows in terms of steady-state solutions. Moreover, rotation leads to an axisymmetric
geometry, that allows one to simplify the problem, reducing its dimensionality.

Interestingly, the metric associated with steady-state rotating sources, can be described in the 3+1 formalism using
spherical coordinates [t, r, θ, φ], with the following form of the line element:

ds2 = −α2dt2 + γrrdr
2 + γθθdθ

2 + γφφ(dφ+ βφdt)2 (2.49)

where the metric coefficients are only functions or r and θ. Examples of this metric are the Schwartshild metric,
and the Kerr metric in Boyer-Lindquist coordinates. We use here the equivalent form:

ds2 = −α2dt2 + γrrdr
2 + γθθdθ

2 +R2(dφ− ωdt)2 (2.50)

where we have introduced the generalized cylindrical radius R = γφφ, and the frame dragging speed ω = −βφ.
The determinant of the three-metric now reads: γ̃ = γrrγθθR2.
Let us consider the simplest geometry of an aligned rotator, Fig. (2.1), with the θ = 0 polar-axis coincident with
the rotation axis and the symmetry axis of the problem. The symmetry of the problem is such that the solution will
be independent on the azimuthal angle φ: ∂φ = 0, and stationary in time: ∂t = 0.

2.3.1.1 Magnetic field We begin with the magnetic field. The solenoidal condition for an axisymmetic magnetic
field can be written as:

∇ ·B = 0 ⇒ ∂(γ̃1/2Br)

∂r
+
∂(γ̃1/2Bθ)

∂θ
= ∇ ·Bp = 0 (2.51)

where Bp is the poloidal component of the magnetic field. This implies that the components of the poloidal
magnetic field can be written as the derivatives of a magnetic flux function:

Br =
1

γ̃1/2
∂θΨ Bθ = − 1

γ̃1/2
∂rΨ (2.52)

The scalar function Ψ is know as Euler potential, and it allows one to reduce the description of the poloidal field
from two variables Br and Bθ, to just one. Moreover it is evident that Bi∇iΨ = Bp · ∇Ψ = 0: the poloidal
magnetic field lines are orthogonal to the gradient of Ψ. This means that the surfaces Ψ = const represent the
magnetic surfaces defined by the rotation of the poloidal field lines around the symmetry axis. Magnetic field lines
lay on these surfaces. The various field lines on the same magnetic surface are all identified by the same value of
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Figure 2.1 Scheme of the geometry of the Force Free PSR magnetosphere

Ψ. The remaining azimuthal component of the magnetic field can be expressed in term of another function, called
current function:

Bφ = α−1I, Bφ =
I

αR2
(2.53)

Let us introduce the coordinate basis ei = ∂i, such that the outer product is given by:
√
γrrer =

√
γθθeθ ×√

γφφeφ, and permutations. In vector form the magnetic field can be written as the following:

B = Brer +Bθeθ +Bφeφ =
1

γ̃1/2
∂θΨer −

1

γ̃1/2
∂rΨeθ +

I
αR2

eφ (2.54)

=
γθθ

R2
∂θΨ(eθ × eφ) +

γrr

R2
∂rΨ(er × eφ) +

I
αR2

eφ (2.55)

=
1

R2
(∇Ψ)θeθ × eφ +

1

R2
(∇Ψ)rer × eφ +

I
αR2

eφ (2.56)

B =
∇ψ × eφ
R2

+
I

αR2
eφ (2.57)

2.3.1.2 Electric field Let us now turn to the electric field, beginning with the azimuthal component: Eφ. Ax-
isymmetry implies ∂φEφ = 0→ Eφ = Eφ(r, θ), while stationarity, together with Eq. (2.30), gives:

∇× [αE + β ×B] = 0. (2.58)

The r and θ components will be:

εrθφ∂θ[αEφ] = 0, εθrφ∂r[αEφ] = 0 (2.59)

which implies that αEφ is a constant, independent of r and θ. Given that on axis, due to symmetry constraints,
Eφ = 0 this immediately tells us that Eφ = Eφ = 0 in the entire space. This result is nothing else than
Stokes Theorem about circuitation. Together with the force-free condition Eq. (2.45) or the Ideal MHD condition
Eq. (2.21), this states that the electric field is perpendicular both to the azimuthal direction φ and to the magnetic
field. Let us now consider the φ component of Eq. (2.58):

εφrθ∂r[αEθ + εθφrβ
φBr] + εφθr∂θ[αEr + εrφθβ

φBr] = 0 (2.60)
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which suggest setting:

αEr + εrφθβ
φBθ = αEr + βφ∂rΨ = αEr − ω∂rΨ = ∂rΦ (2.61)

αEθ + εθφrβ
φBr = αEθ + βφ∂θΨ = αEθ − ω∂θΨ = ∂θΦ (2.62)

αE = ∇Φ + ω∇Ψ (2.63)

where the new scalar function Φ is known as scalar potential. Now, recalling that in force-free the electric and
magnetic field are mutually orthogonal, one has:

εφij∂iΦ∂jΨ = [∂rΦ∂θΨ− ∂θΦ∂rΨ] = α[Er∂θΨ− Eθ∂rΨ] =
α

γ̃1/2
[ErB

r + EθB
θ] =

α

γ̃1/2
E ·B = 0

⇒ ∇Ψ×∇Φ = 0 (2.64)

The gradients of the scalar potential is perpendicular to the magnetic surfaces. Then the scalar potential is itself a
function of the magnetic flux function: Φ = Φ(Ψ)⇒ ∂iΦ∂jΨ = Φ′(Ψ)∂iΨ∂jΨ. Interestingly the electric field is
a function of Ψ too.

Let us look at the drift velocity. From Eq. (2.46) one has:

vi =
εijkEjBk

B2
=
εijk[∂jΦ + ω∂jΨ]Bk

αB2
=
εijk[dΦ/dΨ + ω](∂jΨ)Bk

αB2
(2.65)

vr =
[dΦ/dΨ + ω]

α

Bφ∂θΨ

γ̃1/2B2
=

[dΦ/dΨ + ω]

α

BφB
r

B2
(2.66)

vθ = − [dΦ/dΨ + ω]

α

Bφ∂rΨ

γ̃1/2B2
=

[dΦ/dΨ + ω]

α

BφB
θ

B2
(2.67)

vφ =
dΦ/dΨ + ω

α

Bθ∂rΨ−Br∂θΨ
γ̃1/2B2

= −dΦ/dΨ + ω

α

BθB
θ +BrB

r

B2
= −dΦ/dΨ + ω

α
[1− BφB

φ

B2
](2.68)

Introducing the new quantity Ω(Ψ) = −dΦ/dΨ, the drift velocity can be rewritten as:

vi =
Ω(Ψ)− ω

α
[δiφ −

BφB
i

B2
] ⇒ v =

Ω(Ψ)− ω
α

[
eφ −

Bφ
B2
B

]
(2.69)

This equation tells us that the drift velocity can be decomposed into a purely azimuthal rotation plus a motion
along the magnetic field lines. Then Ω(Ψ) can be thought of as the rotation rate of the magnetic field lines. Note
that the rotational component of the drift velocity has the same form as the fluid velocity used in Eq. (??). In ideal
MHD the drift velocity coincide the the component of the velocity of the comoving observer perpendicular to the
magnetic field.

2.3.1.3 Currents Let us now conclude investigating the structure of the currents. Currents can be derived from
the electric and magnetic field using the steady state Ampere law Eq. (2.32). We begin with the toroidal component
of the current:

αIφ − qeβφ = εφjk∂j [αBk − εkφlβφEl] = γ̃−1/2
[
∂r[αBθ + εθφrωE

r]− ∂θ[αBr + εrφθωE
θ]
]

(2.70)

= γ̃−1/2
[
∂r[αγθθB

θ + γ̃1/2ωEr]− ∂θ[αγrrBr − γ̃1/2ωEθ]
]

(2.71)

= ωγ̃−1/2∂i[γ̃
1/2Ei] + Ei∂iω + γ̃−1/2

[
∂r

(
αγθθ
γ̃1/2

∂rΨ

)
+ ∂θ

(
αγrr
γ̃1/2

∂θΨ

)]
(2.72)

= ωqe + Ei∂iω + γ̃−1/2

[
∂r

(
αγ̃1/2γrr

R2
∂rΨ

)
+ ∂θ

(
αγ̃1/2γθθ

R2
∂θΨ

)]
(2.73)

⇒ αIφ = −γ̃−1/2∂i

[
γ̃1/2 α

R2
(∇Ψ)i

]
+ Ei∂iω = −∇ ·

[ α
R2
∇Ψ

]
+E · ∇ω (2.74)
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while the poloidal component is:

αIk = εkjφ∂j [αBφ − εφφlβφEl] = εkjφ∂j [I] (2.75)

that in vector form reads:

αIp = α[Irer + Iθeθ] =

√
γθθ
γrr

1

R
(γθθ∂θI)er −

√
γrr
γθθ

1

R
(γrr∂rI)eθ (2.76)

=
1

R2
(∇I)θ(eθ × eφ) +

1

R2
(∇I)r(er × eφ) (2.77)

Then the total current in vector form can be written as:

αI =
∇I × eφ
R2

−
[
∇ ·
( α

R2
∇Ψ

)
−E · ∇ω

]
eφ (2.78)

2.3.1.4 Force Free Condition At this point we have all the terms for the electromagnetic field and for the
currents expressed in terms of the three free function Ψ, I and Ω(Ψ). Then the force free conditions reads:

ρeE + I ×B = [I − ρev]×B = 0 (2.79)

In tensor form:

εijk[Ij − ρevj ]Bk =
εijk
α

[
αIj − ρe(Ω(Ψ)− ω)

[
δjφ −

BφB
j

B2

]]
Bk =

εijk
α

[αIj − ρe(Ω(Ψ)− ω)δjφ]Bk

=
εijk
α

[
εjlφ∂lI −

[
∇ ·
( α

R2
∇Ψ

)
−E · ∇ω + ρe(Ω(Ψ)− ω)

]
δjφ

]
[εknφ∂nΨ +

I
αR2

δkφ]

= −εiφkε
knφ

α

[
∇ ·
( α

R2
∇Ψ

)
−E · ∇ω + ρe(Ω(Ψ)− ω)

]
∂nΨ +

εijkε
jlφ

α
∂lI[εknφ∂nΨ +

I
αR2

δkφ]

= −δni
[
∇ ·
( α

R2
∇Ψ

)
−E · ∇ω + ρe(Ω(Ψ)− ω)

] ∂nΨ

α
+ εijφε

jlφ I
α2R2

∂lI +
εijkε

jlφεknφ

α
∂lI∂nΨ

= −
[
∇ ·
( α

R2
∇Ψ

)
−E · ∇ω + ρe(Ω(Ψ)− ω)

] ∂iΨ
α
− δli

I
α2R2

∂lI +
[δliδ

φ
k − δ

φ
i δ
l
k]

α
εknφ∂lI∂nΨ

= −
[
∇ ·
( α
R
∇Ψ

)
−E · ∇ω + ρe(Ω(Ψ)− ω)

] ∂iΨ
α
− I
α2R2

∂iI + δφi ε
lnφ ∂lI∂nΨ

α
(2.80)

The requirement that the azimuthal component of the Lorentz force vanishes translates into:

δφφε
lnφ∂lI∂nΨ = εlnφ∂lI∂nΨ = 0 ⇒ ∂iI ∝ ∂iΨ ⇒ I = I(Ψ) (2.81)

Then one can cast the remaining poloidal component into a vector form:

fp =
[
−∇ ·

( α

R2
∇Ψ

)
+E · ∇ω − ρe(Ω(Ψ)− ω)

] ∇Ψ

α
− I
α2R2

∇I

fp =

[
−∇ ·

( α

R2
∇Ψ

)
+E · ∇ω − ρe(Ω(Ψ)− ω)− I

αR2

dI
dΨ

]
∇Ψ

α
(2.82)

2.3.1.5 The Pulsar Equation Recalling Gauss Law Eq. (2.27), the force free condition leads to:[
−∇ ·

( α

R2
∇Ψ

)
+E · ∇ω − (∇ ·E)(Ω(Ψ)− ω)− I

αR2

dI
dΨ

]
= 0 (2.83)[

∇ ·
( α

R2
∇Ψ + (Ω(Ψ)− ω)E

)
−E · ∇Ω(Ψ) +

I
αR2

dI
dΨ

]
= 0 (2.84)

Recalling that the electric field can also be expressed as a function of Ψ as in Eq. (2.63), then one has:[
∇ ·
(
α

R2
∇Ψ− (Ω(Ψ)− ω)2

α
∇Ψ

)
+

(Ω(Ψ)− ω)

α
∇Ψ ·

(
dΩ

dΨ
∇Ψ

)
+
I

αR2

dI
dΨ

]
= 0 (2.85)



FORCE FREE MHD 43

This is known as pulsar equation:

∇ ·
[
α

R2

(
1− R

2(Ω(Ψ)− ω)2

α2

)
∇Ψ

]
+

(Ω(Ψ)− ω)

α

dΩ

dΨ
(∇Ψ)2 +

I
αR2

dI
dΨ

= 0 (2.86)

Note that this is an elliptic equation, where the coefficient of the elliptic operator vanishes where R = (Ω(Ψ) −
ω)/α. This surface is known as generalized Light Cylinder, because it corresponds to la last place where corotation
is allowed. The vanishing of the coefficient implies that the equation becomes singular and this places a constrain
on the possible form of the function I(Ψ), that must guarantee regularity of the solution.

2.3.2 The monopole solution

In general the solution of Eq. (2.86) can only be computed numerically, and depends on the particular boundary
conditions that are imposed. It is possible however to derive an analytical solution in the very simple case of a
uniformly rotating conducting sphere, endowed with a uniform radial magnetic field on its surface, in flat space-
time. In flat space-time α = 1,R = r sin θ and ω = 0. Moreover for an uniform rotator = dΩ = 0, and the second
term in Eq. (2.86) vanishes, reducing it to:

∇ ·
[(

1

r2 sin2 θ
− Ω2

)
∇Ψ

]
+

I
r2 sin2 θ

dI
dΨ

= 0 (2.87)

where Ω is the rotation rate of the uniform conducting sphere (in a conductor the comoving electric field vanishes,
and the drift velocity coincides with the conductor speed apart from any arbitrary parallel component). For purely
radial magnetic surfaces Ψ = H cos θ and Br = Hr−2, such thatH represents a magnetic flux. Then one has:[

1− Ω2r2 sin2 θ
]
∇ · ∇Ψ + r2 sin2 θ∇Ψ · ∇

[
1

r2 sin2 θ

]
+ I dI

dΨ
= 0 (2.88)

−H
[
1− Ω2r2 sin2 θ

]
r2 sin θ

∂

∂θ
(sin2 θ) +H sin2 θ

r2

∂

∂θ
(cos θ)

∂

∂θ

(
1

sin2 θ

)
= −I dI

dΨ
(2.89)

−2Hcos θ

r2
+ 2HΩ2 sin2 θ cos θ + 2Hcos θ

r2
= −I dI

dΨ
(2.90)

2ΩΨ

[
1− Ψ2

H2

]
= I dI

dΨ
(2.91)

whose solution is:

I = ΩH
[
1− Ψ2

H2

]
,

dI
dΨ

= −2Ω
Ψ

H
(2.92)

such that
√
BφBφ = HΩ sin θr−1. Note that the ratio of the azimuthal over the poloidal components of the

magnetic fields is |Bφ|/|Br| = Ωr sin θ. This is equal to 1 at the Light Cylinder, while at larger radii the azimuthal
component becomes the dominant one.

2.3.3 The Blandford Znajeck mechanism

It is possible to show that a similar result applies also to the case of a rotating Black Hole. in the case of a BH,
however it is not possible to define any material surface, to which the magnetic field line can be attached, and
which provides an independent constrain on Ω. On the contrary we will show that it is the frame dragging of
space-time itself that force magnetic field lines to rotate. For this to happen the magnetic fields line must penetrate
the event horizon at r = rH . Now, if one uses standard Boyer-Lindquist coordinates to describe the Kerr metric,
Eq. (2.86) can be shown to be singular at the event horizon where α → 0, and γ̃ → ∞. This is however just
a coordinate singularity, and not a physical one, because observers can cross the event horizon. In particular the
free-falling observer will cross it without experiencing any singularity. This implies that the electromagnetic field
must be regular at the event horizon, in the sense that the free falling observer should measure a finite strength for
the electric and magnetic field. This regularity requirement provides the second constrain among I, Ω and Ψ.
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2.3.3.1 Regularity at the event horizon We begin writing down the components of the electric field, measured
by the free-falling observer, in Boyer-Lindquist coordinates:

Êµ = ÛνF
µν = (ÛνE

ν)nµ − (Ûνn
ν)Eµ + εµνλκBλnκÛν (2.93)

Ê0 = (ÛνE
ν)n0 = α−1(ÛνE

ν) (2.94)
Êr = −(Ûνn

ν)Er + εrνλÛνBλ = −(Ûνn
ν)Er + εrφθÛφBθ (2.95)

Êθ = −(Ûνn
ν)Eθ + εθνλÛνBλ = −(Ûνn

ν)Eθ + εθφrÛφBr + εθrφÛrBφ = (2.96)

Êφ = (ÛνE
ν)nφ − (Ûνn

ν)Eφ = εφνλÛνBλ = −α−1(ÛνE
ν)βφ + εφrθÛrBθ (2.97)

Now, using the results from Appendix A: Ûr = −γrr and Ûθ = 0, together with the force free condition Eφ = 0,
we have (ÛνE

ν) = (ÛrE
r) = −Er. We recall also that in the limit r → rH , α → 0, γrr ∝ γ̃ ∝ α−2 →∞, one

has the following limits:

Ê0 = α−1(ÛrE
r) = α−1(γrrE

r) ==
(Ω− ω)

α2
∂rΨ→∞ (2.98)

Êr = −
[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γrr
∂rΨ− a sin2 θ

γθθB
θ

γ̃1/2
→ −

[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γrr
∂rΨ (2.99)

Êθ = −
[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γθθ
∂θΨ + a sin2 θ

γrrB
r

γ̃1/2
+ γrr

Bφ
γ̃1/2

(2.100)

→ −
[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γθθ
∂θΨ + γrr

I
αγ̃1/2

→∞ (2.101)

Êφ =
(Ω− ω)

α2
ω∂rΨ +

γrrγθθ
γ̃

∂rΨ→∞ (2.102)

It is evident that the single components diverge. However, covariant and contravariant components are not physi-
cally measurable quantities, because they depend on the choice of coordinate system. The only measurable quan-
tities are scalars. For the electric field its norm Ê2 is:

Ê2 = −(αÊ0)2 + γφφ[Êφ − ωÊ0]2 + γrr(Ê
r)2 + γθθ(Ê

θ)2 (2.103)

= − (Ω− ω)2

α2
(∂rΨ)2 + γφφ

(
1

γφφ
∂rΨ

)2

+

+ γrr

{[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γrr
+ a sin2 θ

γθθ
γ̃

}2

(∂rΨ)2 +

+ γθθ

{[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γθθ
∂θΨ− a sin2 θ

γrr
γ̃
∂θΨ− γrr

I
αγ̃1/2

}2

(2.104)

In the limit r → rH , α → 0, γrr ∝ γ̃ ∝ α−2 → ∞, there are apparently diverging terms. Considering just the
diverging terms in that limit one has:

Ê2 → − (Ω− ω)2

α2
(∂rΨ)2 + γrr

{[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γrr

}2

(∂rΨ)2 +

+ γθθ

{[
ρ2(r2 + a2)

Σ2

]
(Ω− ω)

α2γθθ
∂θΨ− γrr

I
αγ̃1/2

}2

→
[
ρ4(r2 + a2)2

Σ4α2γrr
− 1

]
(Ω− ω)2

α2
(∂rΨ)2 +

{[
(r2 + a2)

∆

]
(Ω− ω)
√
γθθ

∂θΨ−
√
γrr

I
α
√
γφφ

}2

→
[
ρ4(r2 + a2)2

Σ2α2γrr
− Σ2

]
(Ω− ω)2

Σ2α2
(∂rΨ)2 +

{[
(r2 + a2)

∆

]
(Ω− ω)
√
γθθ

∂θΨ−
√
γrr

I
α
√
γφφ

}2

→
[
a2∆ sin2 θ

] (Ω− ω)2

Σ2α2
(∂rΨ)2 +

{[
(r2 + a2)

∆

]
(Ω− ω)
√
γθθ

∂θΨ−
Σ

∆

I
√
γφφ

}2

(2.105)
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The first term is finite (comes from two diverging terms that cancel each other), while the second is finite only if
the following condition holds:

I =

√
γφφ
γθθ

(r2 + a2)

Σ
(Ω− ω)∂θΨ =

√
γφφ
γθθ

(Ω− ω)∂θΨ (2.106)

where we have taken the limit r → rH ⇒ Σ → r2 + a2. This is known as Znajeck regularity condition, and
provides the second relation between I, Ω and Ψ that the solution must satisfy. We can check that this condition
ensures also the regularity of the magnetic field. Again the magnetic field measured by the comoving observer is:

B̂µ = ÛνF
∗µν = (ÛνB

ν)nµ − (Ûνn
ν)Bµ − εµνλκEλnκÛν (2.107)

B̂0 = (ÛνB
ν)n0 = α−1(ÛνB

ν) (2.108)
B̂r = −(Ûνn

ν)Br − εrνλÛνEλ = −(Ûνn
ν)Br − εrφθÛφEθ (2.109)

B̂θ = −(Ûνn
ν)Bθ − εθνλÛνEλ = −(Ûνn

ν)Bθ − εθφrÛφEr = (2.110)

B̂φ = (ÛνB
ν)nφ − (Ûνn

ν)Bφ − εφνλÛνEλ = −α−1(ÛνB
ν)βφ − εφrθÛrEθ (2.111)

Now (ÛνB
ν) = (ÛrB

r + ÛφB
φ) = −Br + aI sin2 θ/α

B̂0 = α−1[−Br + aγφφI sin2 θ/α] = −γrr
∂θΨ

αγ̃1/2
+ aγφφ

I sin2 θ

α2
→∞ (2.112)

B̂r =

[
ρ2(r2 + a2)

Σ2

]
1

αγ̃1/2
∂θΨ− a sin2 θ

(Ω− ω)

αγ̃1/2
∂θΨ→

{[
ρ2(r2 + a2)

Σ2

]
− a sin2 θ(Ω− ω)

}
∂θΨ

αγ̃1/2

B̂θ = −
[
ρ2(r2 + a2)

Σ2

]
1

αγ̃1/2
∂rΨ + a sin2 θ

(Ω− ω)

αγ̃1/2
∂rΨ→

{
a sin2 θ(Ω− ω)−

[
ρ2(r2 + a2)

Σ2

]}
∂rΨ

αγ̃1/2

B̂φ = α−1[−Br + aγφφI sin2 θ/α]ω +

[
ρ2(r2 + a2)

Σ2

]
γφφI
α2
− γrr

(Ω− ω)

αγ̃1/2
∂θΨ→∞

Now in analogy with Eq. (2.103):

B̂2 = −(αB̂0)2 + γφφ[B̂φ − ωB̂0]2 + γrr(B̂
r)2 + γθθ(B̂

θ)2 (2.113)

The last term is finite in the limit r → rH . The others give:

B̂2 → −α2

[
γrr −

γrra sin2 θ

α
√
γrr

(Ω− ω)

]2(
∂θΨ

αγ̃1/2

)2

+

+ γrr

{[
ρ2(r2 + a2)

Σ2

]
− a sin2 θ(Ω− ω)

}2(
∂θΨ

αγ̃1/2

)2

+

+ γφφ

[
ρ2(r2 + a2)γrr

Σ2α
√
γrr

− γrr
]2

(Ω− ω)2

(
∂θΨ

αγ̃1/2

)2

(2.114)

where we already used Znajeck condition for I. Again recalling that in the limit r → rH , we have Σ → r2 + a2

and α
√
γrr = ρ2/Σ it can be shown that the last term ∝ (γrr∆)2 is finite while the others two give:{
−γrr

[
α
√
γrr − a sin2 θ(Ω− ω)

]2
+ γrr

[(
ρ2(r2 + a2)

Σ2

)
− a sin2 θ(Ω− ω)

]2
}(

∂θΨ

αγ̃1/2

)2

(2.115)

which also scales ∝ (γrr∆)2 and it is thus finite.

2.3.3.2 Perturbative solution Let us normalize the mass of the BH to unity. There are no exact solutions for
rotating BH, however one can derive a perturbative solution in the limit a � 1, which is known as Bladford-
Znajecksolution. = The idea is that at large distances the solution should look like the monopole solution derived
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in flat space-time. Then, given that the sing of a does not alter the shape of the magnetic field surface, one assumes
the following expansion:

Ψ = Ψo + aΨ1 = A cos θ + a2Ψ1(r, θ) +O(a4), I = aY (r, θ) +O(a3), Ω = aW (r, θ) +O(a3)(2.116)

One can immediately verify the first term in the limit a → 0 of non rotating BH. Now let us turn to Znajeck
regularity at the horizon, and consider the limit a→ 0⇒ rH → 2:

aY (2, θ) =

(
aW (2, θ)− 2ar

Σ2

)
Σ

ρ2
A sin2 θ ⇒ Y (2, θ) = −A(W (2, θ)− 1/4) sin2 θ (2.117)

We have shown that for a monopole in flat spacetime the relation between the current function and the angular
velocity Eq. (2.92) is I = −AΩ sin2 θ. Together with the previous one the fix the value of Y and W to W = 1/8,
and Y = A sin2 θ/8. this means that the rotation rate ofr the magnetic field lines is constant and equal to one
half of the BH rotation rate defined as ω(r = rH). Now we are going to take the limit r → ∞ of the Eq. (2.86)
retaining only terms in a2

∂r

(
1

sin θ
∂r(a

2Ψ1)

)
+

∂θ

([
1

r2 sin θ
+
a2 sin θ

64

]
∂θ(A cos θ + a2Ψ1)

)
= −a2 I

sin θ

dI
dΨ

=
Aa2 sin θ cos θ

32
(2.118)

we see that the angular dependence is Ψ1 ∝ sin2 θ cos θ,while taking the limit r → ∞ we get that Ψ1 ∝ 1/r2.
This means that at large radii the filed lines approach the monopole ∝ a2/r.

2.3.4 Torque and Energy Losses

We will show that both the monopole and the Blandford-Znajeck solutions imply an outgoing energy and angular
momentum flux, corresponding to a net energy loss and torque on the central rotating object. This is the reason why
one can consider them as force free wind/outflows, despite the fact that nop matter is involved in their derivation,
and no matter speed is properly defined.

Recalling Eq. (2.16), the energy flux associated to an electromagnetic field, can be defined in terms of the Poynting
vector. The net energy flux will be given by the integral over the 2-sphere. Given that the solution is time inde-
pendent, the energy flux across any concentric 2-sphere must be the same, so it is convenient to compute it at large
raddi where the space-time can be assumed flat:

Ė =

∫
S
Sin

idS = lim
r→∞

2π

∫ π

0

√
SrSrr

2 sin θdθ (2.119)

where ni is the normal to the surface of integration dS, coincident with the radial direction for a sphere. Now
Using Eq. (2.16), one has:

Sr = εrθφEθBφ = εrθφ
I[Ω− ω]∂θΨ

α2
→ Ω2Φ2

B

sin2 θ sin θ

r2 sin θ
for r →∞ (2.120)

where we recall that for radial magnetic field surfaces at infinity Ψ = H cos θ, and I = ΩH sin2 θ. then

Ė = 4π
2

3
H2Ω2 (2.121)

In the same way one can compute the angular momentum losses L̇ associated to the φ component of the Poynting
flux:

L̇ =

∫
S
Tφi n

ilφdS = lim
r→∞

2π

∫ π

0

√
BφBφ

√
BrBrr sin θr2 sin θdθ (2.122)

where lφ represent the unit harm-length in the azimuthal direction. Then:

L̇ = 2π

∫ π

0

√
BφBφ

√
BrBrr

3 sin2 θdθ = 2π

∫ π

0

H
r2

I
r sin θ

r3 sin2 θdθ (2.123)
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hence:

L̇ = 4π
2

3
H2Ω =

Ė

Ω
(2.124)

2.4 Relativistic MHD waves

In Sect. (1.11) we have computed how a fluid a rest in a gravitational field responds to small perturbations. We
have found that in the absence of entropy stratification, the fluid undergoes stable oscillations, that correspond to
the propagation of sound waves. In flat-space-time the sound speed can be written, for ideal fluids, as a function of
pressure and density. Here we are going to compute the characteristic speed of waves in a relativistic magnetized
plasma. For simplicity we will neglect gravity, and derive the solution first in the comoving frame, and later trans-
form to the laboratory frame.

We recall that in Ideal MHD the comoving electric field eµ = 0, then

F ∗µν = uµbν − uνbµ ⇒ uµb
µ = uµuνF

∗µν = 0 and ∇µF ∗µν = ∇µ(uµbν − uνbµ) = 0 (2.125)

where the first relation comes from the anti-symmetry of the electromagnetic tensor. Contracting the last one with
uν and bν one has:

uν∇µ(uµbν − uνbµ) = (uνb
ν)∇µuµ + uνuµ∇µbν − (uνu

ν)∇µbµ + bµuν∇µuν
= uνuµ∇µbν +∇µbµ = 0 (2.126)

bν∇µ(uµbν − uνbµ) = (bνb
ν)∇µuµ + bνuµ∇µbν − (bνu

ν)∇µbµ + bµbν∇µuν
= b2∇µuµ + uµ∇µb2/2− bµbν∇µuν = 0 (2.127)

As was done in Eq. (1.80) we take the contraction of energy-momentum conservation with the four velocity:

uµ∇νTµν = uµ∇νTµνmatter + uµ∇νTµνem = uµ∇νTµνmatter = uµ∇µp+ Γp∇µuµ = 0 (2.128)

where we have make use of Eq.s (2.17)-(2.21) for the electromagnetic part. In Ideal MHD the internal energy obeys
the same equation as in a perfect unmagnetized fluid. Now for an Ideal perfect fluid where entropy is conserved
p ∝ ρΓ, one has:

∂

∂p

(
ρ+

p

Γ− 1

)
=

1

Γ− 1
+

1

Γ

ρ

p
=
ρ+ Γ

Γ−1p

Γp
=

1

c2s
(2.129)

then, using mass conservation:

uµ∇µρ+
1

Γ− 1
uµ∇µp+

Γ

Γ− 1
p∇µuµ + ρ∇µuµ =

uµ∇µp
c2s

+ ρh∇µuµ = 0 (2.130)

where we recall that the enthalpy is ρh = ρ+Γp/(Γ−1). We can also take the contraction of the energy-momentum
conservation with the magnetic field bµ, and by using Eq. (2.126) and Eq. (2.23) one has:

∇µ(Tµνbν) = Tµν∇µbν
∇µ[(e+ p+ b2)uµuνbν + (p+ b2/2)bµ − bµb2] = (e+ p+ b2)uµuν∇µbν + (p+ b2/2)∇µbµ − bµbν∇µbν
∇µ[(p− b2/2)bµ] = −(e+ p+ b2)∇µbµ + (p+ b2/2)∇µbµ − bµ∇µb2/2
bµ∇µp = (e+ p)uµuν∇µbν (2.131)

At this point following what was done in Sect. (1.9) we take the orthogonal projection of the energy-momentum
conservation. Focusing on the electromagnetic part, with the use of Eq. (2.126), Eq. (2.131) and Eq. (1.80), one
gets:

gνκ∇µTµνem = ∇µ[b2uµuκ + δµκb
2/2 + bµbκ] (2.132)

= b2uµ∇µuκ + uκb
2∇µuµ + uκu

µ∇µb2 +∇κb2/2− bµ∇µbκ − bκ∇µbµ

= b2uµ∇µuκ +∇kb2/2 + uκu
µ∇µb2 − bµ∇µbκ −

b2uκu
µ

ρhc2s
∇µp+ bκu

µuν∇µbν

= b2uµ∇µuκ +∇kb2/2 + uκu
µ∇µb2 − bµ∇µbκ −

b2uκu
µ

ρhc2s
∇µp+

1

ρh
bκb

µ∇µp
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and together with Eq. (1.82) for the fluid part it gives Euler equation for Ideal MHD:

(e+ p+ b2)uµ∇µuκ − bµ∇µbκ + (δµκ + 2uµuκ)bν∇µbν +

(
δµκ + uµuκ −

b2uµuκ
ρhc2s

+
bµbκ
ρh

)
∇µp = 0 (2.133)

One can the define a total enthalpy wtot = e+ p+ b2 = ρhmag.

2.4.1 Perturbative MHD Waves

Euler equation can be quite complex in the general case, but it simplifies greatly in the comoving reference frame
where uµ = [1, 0, 0, 0], so we will just consider perturbation in the comoving grame and then show how to trans-
form to the lab frame. In the absence of gravity and assuming uniform background quantities, there is no pref-
erential direction, so one can chose a reference system with the x−axis aligned with the wave vector, and using
cartesian coordinates, the covariant derivatives can be substituted with partial derivatives. Moreover we recall that
for first order perturbations we have the following conditions: uµuµ = −1 ⇒ δu0 = 0, and bµuµ = 0 ⇒ b0 = 0
and δb0 = biδui. Now perturbations are chosen in the form:

q = qb + ε(δq)eωt−kxx (2.134)

where qb is the uniform background value.
Recalling that∇0 = ∂0 and ∇x = ∂x, from Eq. (2.126), we have:

∂0δb
0 + ∂xδb

x = −u0u0∂0δb0 ⇒ ∂xδb
x = 0 ⇒ δbx = 0 (2.135)

Induction equation gives:

∇µ(uµbν − uνbµ) = ∂0(u0bν − uνb0) + ∂x(uxbν − uνbx) = 0 (2.136)

and for the ν = y and ν = z components one has:

u0∂0(δby)− ∂0(δuyb0 + uyδb0) + ∂x(δuxby − δuybx) = 0 ⇒ ∂tδb
y + by∂xδu

x − bx∂xδuy = 0 (2.137)
u0∂0(δbz)− ∂0(δuzb0 + uzδb0) + ∂x(δuxbz − δuzbx) = 0 ⇒ ∂tδb

z + bz∂xδu
x − bx∂xδuz = 0 (2.138)

Conservation of internal energy Eq. (2.130) becomes:

u0∂0δp+ ρhc2s∂xδu
x = 0 ⇒ ∂tδp+ ρhc2s∂xδu

x = 0 (2.139)

Finally Euler equation:

wtotu
0∂0δu

k − bx∂xδbk + [bi∂kδb
i] + 2u0δuk[bi∂0b

i] + ∂kp+

+u0δuk[1− b2/ρhc2s ]∂0p+ [bxbk/ρh]∂xδp = 0 (2.140)

and the various components are:

wtot∂tδu
x + by∂xδb

y + bz∂xδb
z + [1 + (bx)2/ρh]∂xδp (2.141)

wtot∂tδu
y − bx∂xδby + [bxby/ρh]∂xδp (2.142)

wtot∂tδu
z − bx∂xδbz + [bxbz/ρh]∂xδp (2.143)

The equation can be written in a compact vector form introducing the displacement vector δq = [δux, δuy, δuz, δby, δbz, δp],
as:

ωδq − kxCδq = 0 (2.144)

with

C =



0 0 0 by

wtot

bz

wtot

ρh+(bx)2

ρhwtot

0 0 0 − bx

wtot
0 bxby

ρhwtot

0 0 0 0 − bx

wtot

bxbz

ρhwtot

by −bx 0 0 0 0

bz 0 −bx 0 0 0

ρhc2s 0 0 0 0 0


(2.145)
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the only non trivial solutions requires that the ratio ω/kx is equal to cmhd, one of the eigenvalues of the matrix C.
Such eigenvalues correspond to the phase-speeds of the waves in MHD. The determinant of the matrixC − cmhdI
is:

w−3
tot(c

2
mhdwtot − b2x)[w2

totc
4
mhd − wtotc

2
mhd(b2 + ρhc2s + b2xc

2
s ) + b2xc

2
s (ρh+ b2)] (2.146)

There are 6 roots corresponding to three couples of waves:

Alfven waves for which:

c2mhd = c2a = b2x/wtot (2.147)
δq = [0,±bz/

√
wtot,∓by/

√
wtot,−bz, by, 0] (2.148)

which as one can see correspond to incompresible waves δp = 0, with velocity fluctuations parallel to the
magnetic fluctuations δui = −δbi/√wtot

Magnetosonic waves for which

c4ms − c2ms[c
2
s + c2m + (c2a − c2m)c2s ] + c2ac

2
s = 0 (2.149)

δq =

[
c2ms, c

2
ms

bxby
wtot

c2s − 1

c2ms − c2a
, c2ms

bxbz
wtot

c2s − 1

c2ms − c2a
, by

c2ms − c2ac2s
c2ms − c2a

, bz
c2ms − c2ac2s
c2ms − c2a

, ρhc2s

]
(2.150)

where c2m = b2/wtot. Obviously these are compressible modes, and can be divided into fast and slow magne-
tosonic:

c2sms =
1

2

c2m + c2s
ρh+ b2x
wtot

−

√(
c2m + c2s

ρh+ b2x
wtot

)2

− 4c2s
b2x
wtot

 (2.151)

c2fms =
1

2

c2m + c2s
ρh+ b2x
wtot

+

√(
c2m + c2s

ρh+ b2x
wtot

)2

− 4c2s
b2x
wtot

 (2.152)

As in the non relativistic case, the fast magnetosonic speed is always greater than the Alfven speed which is
always larger than the slow-magnetosonic one. In the two peculiar case of parallel b2x = b2 and perpendicular
bx = 0 propagation one has:

c2fms = c2s + c2a − c2s c2a; c2sms = 0 for bx = 0 (2.153)
c2fms = Max[c2s , c

2
a]; c2sms = Min[c2s , c

2
a] for b2x = b2 (2.154)

2.4.1.1 Transformation to the Lab Frame The solution of the eigenvalue problem in the laboratory frame can
be obtained from the one in the fluid frame via Lorentz transformations. Let (ω̂, k̂) be the wave four-vector of
a wave propagating along the x-axis of the laboratory frame (k̂y = k̂z = 0). Where we used the hat symbol to
indicate quantities measured in the lab frame (while un-hatted letter will be used for the quantities measured by the
comoving observer). The phase velocity of the wave in the laboratory frame is ĉ2 = ω̂2/k̂2, but in the frame of a
fluid moving with four-velocity (γ̂, γ̂v̂) one has:

ω = γ̂(ω̂ − k̂ · v̂) (2.155)

k‖ = γ̂(k̂‖ − ω̂v̂) (2.156)

k⊥ = k̂⊥ (2.157)

which gives:

k = k̂ − k̂ · v̂
v̂2

v̂ + γ̂

(
k̂ · v̂
v̂2

v̂ − ω̂v̂

)
= k̂ − v̂

[
k̂ · v̂
v̂2

(γ̂ − 1)− ω̂γ̂

]
(2.158)

k2 = k̂2
⊥ + γ̂2(k̂‖ − ĉk̂v̂)2 = k̂2

⊥ + k̂2
‖ + k̂2

‖(γ̂
2 − 1) + γ̂2k̂2ĉ2v̂2 − 2γ̂2k̂2ĉv̂x

= k̂2 − ĉ2k̂2 + γ̂2k̂2ĉ2 +
k̂2v̂2

x

v̂2
(γ̂2 − 1)− 2γ̂2k̂2ĉv̂x = k̂2 − ĉ2k̂2 + γ̂2k̂2(ĉ− v̂x)2 (2.159)
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Hence in the fluid frame one has:

c2 =
γ̂2(ĉ− v̂x)2

1 + γ̂2(ĉ− v̂x)2 − ĉ2
(2.160)

This equation allows us to relate the phase velocity of the wave in the laboratory frame ĉ to the phase velocity of
the same wave measured in the fluid frame c. For us this is just one of the wave speeds of the MHD modes found
previously. The next step is to transform the four vector of the comoving magnetic field (b̂0, b̂), measured in the
laboratory frame, into the one measured in the comoving frame. Such transformation is identical to the one done
for the wave-vector:

b = b̂− v̂

[
b̂ · v̂
v̂2

(γ̂ − 1)− b̂0γ̂

]
= b̂− v̂

[
b̂ · v̂

(γ̂ + 1)
γ̂2 − b̂0γ̂

]

= b̂− v̂

[
γ̂B̂ · v̂ + b̂0v̂2γ̂2

γ̂ + 1
− b̂0γ̂

]
= b̂− v̂

[
γ̂B̂ · v̂ + b̂0γ̂2 − b̂0 − b̂0γ̂(γ̂ + 1)

γ̂ + 1

]

= b̂− v̂ γ̂b̂0

γ̂ + 1
(2.161)

where we have used the relations between comoving magnetic field and the Eulerian magnetic field given by
Eqs. (2.41)-(2.42), which imply γ(bµv

µ) = (Biv
i)[1 + γ2]. Then, combining Eq. (2.158) with Eq. (2.161), one

finds the parallel component to the wave vector in the fluid frame to be:

k · b = k̂ · b̂− k̂ · v̂

[
γ̂b̂0

γ̂ + 1

]
+ b̂ · v̂

[
k̂ · v̂
γ̂ + 1

γ̂2 − ω̂γ̂

]
− v̂2

[
γ̂b̂0

γ̂ + 1

][
k̂ · v̂
γ̂ + 1

γ̂2 − ω̂γ̂

]

= k̂ · b̂− γ̂(b̂ · v̂)k̂ĉ+ v̂2k̂ĉ

[
γ̂2b̂0

γ̂ + 1

]
+
k̂ · v̂
γ̂ + 1

[
−γ̂b̂0 + γ̂2(b̂ · v̂)− b̂0γ̂(γ̂ − 1)

]
]

= k̂ · b̂− γ̂(b̂ · v̂)k̂ĉ+ v̂2k̂ĉ

[
γ̂2b̂0

γ̂ + 1

]
+
k̂ · v̂
γ̂ + 1

[
γ̂2 b̂

0(1 + γ̂2v̂2)

γ̂2
− b̂0γ̂2

]
]

= k̂ · b̂+ k̂ĉb̂0
[
γ̂2v̂2

γ̂ + 1
− 1 + γ̂2v̂2

γ̂

]
= k̂ · b̂− k̂ĉb̂0 (2.162)

Given that in our previous computation of the wave speeds in the comoving frame, we assumed the wave to
propagate in the x-direction, one has:

b2x =
(k · b)2

k2
=

(b̂x − ĉb̂0)2

1 + γ̂2(ĉ− v̂x)2 − ĉ2
(2.163)

At this point, one can apply this relation to the various wave speeds. We begin by taking into account the Alfvèn
speed:

(b̂x − ĉab̂0)2

1 + γ̂2(ĉa − v̂x)2 − ĉ2a
= b2x = wtotc

2
a =

wtotγ̂
2(ĉa − v̂x)2

1 + γ̂2(ĉa − v̂x)2 − ĉ2a
(2.164)

(b̂x − ĉab̂0) = ±
√
wtotγ̂(ĉa − v̂x) (2.165)

which gives:

ĉa =
b̂x ± v̂x

√
wtot

b̂0 ± γ̂√wtot

(2.166)

In the same way we can substitute in the equation for the magnetosonic waves Eq. 2.149. Recalling that ĉs = cs,
ĉm = cm, because they are given in terms of scalar quantities like density pressure and b2, which are independent
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of the observer, we get:

γ̂4(ĉms − v̂x)4

(1 + γ̂2(ĉms − v̂x)2 − ĉ2ms)
2
− γ̂2(ĉms − v̂x)2

1 + γ̂2(ĉms − v̂x)2 − ĉ2ms

(ĉ2s + ĉ2m − ĉ2s ĉ2m) +

+ĉ2s

[
1− γ̂2(ĉms − v̂x)2

1 + γ̂2(ĉms − v̂x)2 − ĉ2ms

]
b̂2x
wtot

= 0

(2.167)

wtotγ̂
4(ĉms − v̂x)4[1− (ĉ2s + ĉ2m − ĉ2s ĉ2m)]− wtotγ̂

4(ĉms − v̂x)4(ĉ2s + ĉ2m − ĉ2s ĉ2m)[1− ĉ2ms]+

+ĉ2s
[
1− ĉ2ms

]
(b̂x − ĉmsb

0)2 = 0
(2.168)

which corresponds to the fourth order equation whose roots define the magnetosonic speed in the laboratory frame.

2.4.2 Circularly Polarized Alfven Waves

It is well known that circularly polarized Alfvèn waves are an exact solution of non-relativistic MHD. We will show
here that they are also an exact solution of relativistic MHD. A circularly polarized Alfvèn wave, propagating along
the x-direction has the following form:

vx = 0, vy = Vcpa sin (cat− x), vz = Vcpa cos (cat− x) ⇒ γ = (1− V 2
cpa)−1/2 = const

Bx = Bo, By = Bcpa sin (cat− x), Bz = Bcpa cos (cat− x) (2.169)
ρ = const, p = const

Then, recalling the relations between the Eulerian and comoving magnetic field Eqs. (2.41)-(2.42), one has:

b0 = γ(B · v) = γBcpaVcpa = const (2.170)
bx = Bo/γ = const (2.171)
by = By/γ + b0vy = γBcpa(Vcpa + γ−2) sin (cat− x) = bcpa sin (cat− x) (2.172)
bz = Bz/γ + b0vz = γBcpa(Vcpa + γ−2) cos (cat− x) = bcpa cos (cat− x) (2.173)

which implies that b2 = const, and ca = bx/(b0 ± γ√wtot) = const.

Let us now consider Euler equation Eq. (2.133). The last term with the pressure gradient vanishes. The terms
with bν∇µbν = ∇µb2 also vanish, then one has:

wtotγ(∂tuy)− b0∂tby − bx∂xby = 0 ⇒ wtotγ
2caVcpa − b0cabcpa + bxbcpa = 0 (2.174)

(2.175)

and an identical one for the z-component, while the x− component vanishes. Then Euler equation will be satisfied
if the velocity and magnetic field are related according to:

Vcpa = − bcpa

γ
√
wtot

=
bcpa√

b2cpa + wtot

→ − Bcpa√
wtot

in the non− relativistic limit (2.176)

2.5 Strong MHD shocks

As discussed in Sect. (1.12), a shock is a discontinuity in a flow field that develops when the local flow speed
exceeds the speed at which disturbances can propagate. For a fluid this is just the sound speed, and shocks form
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in supersonic flows. In the case of MHD, as we saw in Sect. 2.4, there are 3 possible wave speeds: the slow
magneto-sonic, the Alfeènic, and the fast magneto-sonic speed. To each of them one can associate a discontinuous
jump, where some of the fluid variables change abruptly.

In general the jump properties are quite complex, but in the simple case of transverse MHD, when the magnetic
field is perpendicular to the flow speed, and to the normal of the shock front, they can be greatly simplified. This
corresponds to the case bx = 0 (the shock normal can be identified with the x-direction of Sect. (2.4), which
according to Eq. (2.147) and Eq. (2.153), has ca = 0 and csms = 0. The only real wave is the fast magneto-sonic
wave, and the only possible jump is a fast magneto-sonic shock.

Following what was done in Sect. (1.12), we write the relativistic conservation laws for the mass, momentum,
energy, and magnetic field flux as:

[γρvx]u = [γρvx]d (2.177)
[(ρh+ b2)γ2vxvx + p+ b2/2]u = [(ρh+ b2)γ2vxvx + p+ b2/2]d (2.178)

[(ρh+ b2)γ2vxvy]u = [(ρh+ b2)γ2vxvy]d (2.179)
[(ρh+ b2)γ2vx]u = [(ρh+ b2)γ2vx]d (2.180)

[bzγvx]u = [bzγvx]d (2.181)

where ρ, h and b2 are the density, enthalpy and magnetic field energy density in the comoving frame respectively,
γ and v are the flow Lorentz factor and velocity measured in the shock frame, and the subscripts u and d refer to
the upstream and downstream sides of the shock.

Now, let us consider a cold (pu → 0, hu → 1), ultrarelativistic (γu � 1, vxu = vu = 1 − 1/2γ2
u) flow cross-

ing a stationary shock, with purely normal speed (vyu = 0). Then the post shock flow will also be purely normal
vyd = 0 ⇒ vxd = vd, and the magnetic field will remain perpendicular bzu = bu ⇒ bzd = bd. As we have shown
in Sect. (2.3.2), this is a reasonable approximation for a magnetically dominated (force-free) wind at distances far
larger than the Light Cylinder, given that at large radii the speed (drift velocity) becomes radial, while the magnetic
field becomes azimuthal. As we will show in Sect. (2.8), this also holds for MHD winds. So we are here describing
the so called termination shock of a magnetized relativistic outflow from a compact rotator.

In order to further simplify the equations, we make also the assumption that the adiabatic index downstream of
the the shock is 4/3, appropriate for a relativistic fluid with p = e/3. We then proceed to introduce the following
normalizations:

ρd = cρρuγu pd = cpρuγ
2
u bd = cbbuγu (2.182)

Then the equations for the jump become:

γuρu[1− cργdvd] = 0 (2.183)

γ2
u[2ρu + 2b2u]− [2(cργuρu + 4cpγ

2
uρu + c2bb

2
uγ

2
u)γ2

dv
2
d + 2cpγ

2
uρu + c2bb

2
uγ

2
u] = 0 (2.184)

γ2
u[ρu + b2u]− γu[ρu(cρ + 4cpγu) + b2uc

2
bγu]γ2

dvd = 0 (2.185)
buγu[1− cbγdvd] = 0 (2.186)

The first and the last equation have solution:

cρ = cb =
1

γdvd
(2.187)

At this point we introduce the so called magnetization parameter of the upstream flow, defined as σ = b2u/ρu,
which is just the ratio of Poynting flux to kinetic energy flux, and using the solutions Eq. (2.187), we can solve
Eq. (2.184) for cp:

2γ2
uρu[1 + σ] = 2γuγdvdρu + 2cpρuγ

2
u[1 + 4γ2

dv
2
d] + 2σρuγ

2
u + σρuγ

2
u/(γ

2
dv

2
d)

2cp[1 + 4γ2
dv

2
d] = 2− 2γdvd/γu − σ/(γ2

dv
2
d)

cp =
2γ2

dv
2
d(1− γdvd/γu)− σ

2γ2
dv

2
d(1 + 4γ2

dv
2
d)

→ 2− σ/γ2
dv

2
d

2 + 8γ2
dv

2
d

in the limit γu →∞ (2.188)
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Substituting the solutions for cρ, cb and cp in Eq. (2.185) one finds:

γ2
uρu[1 + σ] = γ2

uρu[γd/γu + 4cpγ
2
dvd + σ/vd]

[1 + σ]vd = [γdvd/γu + 4cpγ
2
dv

2
d + σ]

[vd − σ(1− vd)− γdvd/γu][1 + 4γ2
dv

2
d] = 4cpγ

2
dv

2
d[1 + 4γ2

dv
2
d] = 4γ2

dv
2
d[1− γdvd/γu]− 2σ

−γdvd/γu + vd[1 + 4γ2
d(v2

d − vd)] + σ[1 + vd − 4γ2
dv

2
d + 4γ2

dv
3
d] = 0 (2.189)

which in the limit γu →∞ reduces to

vd[1 + 4γ2
d(v2

d − vd)] + σ[1 + vd − 4γ2
dv

2
d + 4γ2

dv
3
d] =

σ + vd + 2σvd − 3v2
d − 3σv2

d

1 + vd
= 0 (2.190)

where we have used the fact that 1− v2
d

= γ−2
d . Then the solution for the downstream velocity is:

vd =
1 + 2σ +

√
1 + 16σ + 16σ2

6(1 + σ)
(2.191)

which shows that for a strong shock, in transverse MHD the post shock properties depend only on the magnetization
of the upstream wind. In Fig. (2.2) we show the post shock quantities as a function of the magnetization. In the
limit of small magnetizations vd → 1/3, while in the limit of high σ one has γd → σ. Note that downstream of
the shock both pd and b2d are much larger than ρd, which justifies the assumption of a relativistic hot plasma that
we have done in choosing the downstream adiabatic coefficient 4/3.

Figure 2.2 Jump conditions at the Termination Shock. Downstream value of the velocity (blue line) normalized to the speed
of light, pressure (green line), and magnetic energy density (red line) normalized to the upstream wind ram pressure, as a
function of the magnetization parameter.

2.6 Axisymmetric Stationary Outflows

In Sect. (2.3), we developed the theory that describes axisymmetric force-free solutions, and in Sect. (2.3.1) we
derived the so called pulsar equation that defines the electromagnetic structure of the outflow.
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In this section we will extend those results to the more general case of axisymmetric stationary Relativistic MHD,
including the presence of a plasma, that contributes with oits density and pressure, to the dynamics. Following
what was done in Sect. (2.3.1), we adopt here a spherical coordinate system [r, θ, φ], and recall that the metric as-
sociated with steady-state rotating sources, in the 3+1 formalism is given by Eq. (2.49). In Sect. (2.3.1) we showed
that the equations can be casted in vector form, such that the results will be independent of the assumed system of
coordinates, and we will do the same here whenever convenient.

Figure 2.3 The concept of magnetic surfaces.

We choose a reference such that the θ = 0 polar-axis is coincident with the rotation axis and the symmetry axis
of the problem. The symmetry of the problem is such that the solution will be independent on the azimuthal angle
φ, ∂φ = 0, and stationary in time ∂t = 0.

2.6.0.1 Magnetic Flux The exact same argument developed in Sect. 2.3.1.1 apply, and we can again define the
Euler potential Ψ such that:

∇ ·B = 0 ⇒ ∇ ·Bp = 0 ⇒ Br =
1

γ̃1/2
∂θΨ, Bθ = − 1

γ̃1/2
∂rΨ (2.192)

where Bp is the poloidal component of the magnetic field. Again Bi∇iΨ = 0:: the poloidal magnetic field lines
are orthogonal to the gradient of Ψ. This means that the surfacesΨ = const represent the magnetic surfaces defined
by the rotation of the poloidal field lines around the symmetry axis. Magnetic field lines lay on these surfaces. In
MHD one has the same concept of magnetic surfaces that one has in force-free.

It is possible to give a physical interpretation of the meaning of the Euler potential, using the covariant Stokes’
Theorem, that realtes the integral of a divergence of a vector field V µ oven an hyper-volume V to the integral of
the flux of the field V µ over its hyper-surface S:∫

V
∇µV µ

√
gdnx =

∫
S
nµV

µ
√
γ̃dn−1x (2.193)

where g is the determinant of the metric tensor, nµ the vector field normal to the hyper-surface S, and γ̃ is the
determinant of the induced metric. Let us take a spherical shell centered on the origin, bounding a spherical
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volume. Then following the same approach used to developed the 3+1 decomposition of the four-dimensional
space, we can do a 2+1 decomposition of the three-dimensional space:

ni = [
√
γrr, 0, 0], γ

(2)
ij = γij − ninj (2.194)

where the different sign in the last formula, comes from the different normalization (signature) of the three-
dimensional space: nini = 1. Then one can define a flux through a surface (not necessarily the boundary of a
domain). Let us take a spherical cap at r = ro, extending from the axis θ = 0 to a colatitude θo:∫

S
nµB

µ√γθθγφφdθdφ = 2π

∫ θo

0

Brγ̃1/2dθ = 2π

∫ θo

0

(∂θΨ|r=ro)dθ = 2πΨ(ro, θo) (2.195)

We see that Ψ represents the total magnetic flux contained within the magnetic surface it itself labels. This
implies that the magnetic flux between two magnetic surfaces ∆Ψ is conserved. This is just a special case, of a
more general property related to the solenoidal condition of B, stating that the magnetic flux along a magnetic tube
is conserved.

2.6.0.2 Electric Field Again we can follow Sect. (2.3.1.2), to characterize the properties of the electric field,
recalling that now, in the presence of a plasma, we can not use the force free condition but we have Ohm’s law.

Repeating the former discussion we recall that axisymmetry implies ∂φEφ = 0 → Eφ = Eφ(r, θ), while
stationarity, together with Eq. (2.30), gives:

∇× [αE + β ×B] = 0. (2.196)

The r and θ components of such equation will be:

εrθφ∂θ[αEφ] = 0, εθrφ∂r[αEφ] = 0 (2.197)

which implies that αEφ is a constant, independent of r and θ, and then we can set Eφ = 0. The φ component of
Eq. (2.196) is equivalent to Eq. (2.60) then one can follow the same reasoning to find that:

αE = ∇Φ + ω∇Ψ (2.198)

It is interesting to note that Ohm’s law in Ideal MHD, tells us that the electric field is perpendicular to the magnetic
field. This is the same geometrical constraint of the force-free case so that Eq. (2.64) holds: Φ = Φ(Ψ), and
Ω(Ψ) = −dΦ/dΨ. Now, recalling that for the poloidal components Bj = εjiφ∂iΨ, we get:

Ei = −α−1[Ω− ω]∇iΨ = −α−1[Ω− ω][jiφ]γ̃1/2Bj = α−1[Ω− ω]εijkB
jδkφ (2.199)

given that the electric field is purely poloidal.

2.6.0.3 Velocity field At this point we can make use of the Ideal MHD condition to derive the relation among
electric field, magnetic field and fluid velocity. While in force free the concept of fluid velocity is not well posed
(we defined a drift velocity), for a fluid the velocity field is well defined, and it is the electric field, that is usually
seen as a derived quantity. Ideal MHD tell us that:

Ei = εijkB
jvk (2.200)

hence:

εijkB
j [vk − α−1[Ω− ω]δkφ] = 0 ⇒ vk = α−1[Ω− ω]δkφ + kBk (2.201)

where k is an arbitrary scalar function. In vector form:

v =
Ω(Ψ)− ω

α
Reφ + kB (2.202)
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The motion of the fluid is the combination of a rigid rotation on the magnetic surface, and a motion along the
magnetic field. Ω(Ψ) represents the rotation rate of magnetic field lines. The motion of a fluid particle can be
interpreted as a combination of the dragging by magnetic field, and the sliding along it. This relation is known as
Ferraro’s isorotation law. It implies that the flow surface (defined by the poloidal velocity field), are coincident with
the magnetic surface: matter flowing between two magnetic surfaces will remain between them. The determination
of Ω depends on the conditions at the footpoints of magnetic field lines.

2.6.0.4 Mass Flux Let us now turn to the equation for mass conservation Eq. (1.59). The 3+1 steady state mass
conservation reads:

∇̃ · [γρ(αv − β)] = ∇̃i
[
γρ[(Ω− ω) + ω]δiφ + αγρkBi

]
= ∇̃ · (αγρkBp) = Bp · ∇̃(αγρk) = 0 (2.203)

where the ∂φ = 0 because of axisymmetry. This implies the existence of another quantity that is constant along
the magnetic surfaces: kαγρ = F (Ψ). It si possible to show, by making use of Stokes theorem, that this quantity
is related to the mass flux. The total mass flux Ṁ through a spherical cap S at a radius ro, coaxial with the
symmetry-axis, and extending from θ = 0 to a colatitude θo, is:∫

S
niγρ(αvi − βi)√γθθγφφdθdφ = 2π

∫ θo

0

αργkBrγ̃1/2dθ

= 2π

∫ θo

0

F (Ψ)∂θΨdθ = 2π

∫ Ψo

0

F (Ψ)dΨ = Ṁ(Ψo) (2.204)

where 2πF (Ψ) = dṀ(Ψ)/dΨ. It is immediately evident the meaning of F (Ψ) as the ratio of the mass flux to the
magnetic flux along a magnetic surface. The above equation also shows that the mass flux between two magnetic
surfaces ∆Ṁ is constant.

2.6.0.5 Angular Momentum Flux Let us now turn our attention to the azimuthal component of the momen-
tum conservation law. We keep the fluid part separated from the electromagnetic part, in order to simplify the
computation. The electromagnetic contribution wil be dealt with via its Lorentz force as:

∇µTµj matter = JµF
µ
j (2.205)

For the matter component we will adopt the 3+1 splitting of Sect. (1.5), while the Lorentz force will be dealt with
in terms of the associated charges and currents as in Sect. (2.2). Using Eq. (1.79), for the matter component and
recalling that the azimuthal component of the electric field vanishes we have that for j = φ:

(αγ̃1/2)−1∂i[γ̃
1/2αγ2ρhvivφ + pδiφ] = εφjkI

jBk (2.206)

where we have set ∂φ = 0 and ∇̃iβi = 0. Mass conservation ensures that ∂i[γ̃1/2αγρvi] = 0, and we can set:

αα−1γρvi∂i[γhvφ] = εφjkε
jlφBk∂l[αBφ]α−1 (2.207)

then, recalling that vi∂i = v · ∇̃ = vp · ∇̃ we have:

αγρvi∂i[γhvφ] = δlkB
k∂l[αBφ] = Bi∂i[αBφ] = (2.208)

But vp = kBp, hence:

αγρkBi∂i[γhvφ] = F (Ψ)Bp · ∇̃[γhvφ] = Bp · ∇̃[F (Ψ)γhvφ] = Bp · ∇̃[αBφ] (2.209)

and

Bp · ∇̃[F (Ψ)γhvφ − αBφ] = 0 (2.210)

That defined a new quantity that us conserved along magnetic surfaces, and that corresponds to the specific angular
momentum:

L(Ψ) = γhvφ −
Bφ
γρk

(2.211)



ACCELERATION OF RADIAL RELATIVISTIC WINDS 57

2.6.0.6 Energy Flux The final quantity we will consider is related to the poloidal part of the momentum equa-
tion. We will again use the same approach as before. We begin with the energy conservation law Eq. (1.69). For
an axisymmetric flow in the metric induced by a rotator βi∂i = βφ∂φ = 0 and ∂iβi = 0, such that one has:

∂i[γ̃
1/2α(ρhγ2vi + εijkEjBk)] = −γ̃1/2[ρhγ2vi + εijkEjBk]∂iα+

γ̃1/2[ρhγ2vivφ − EiEφ −BiBφ + (p+ E2/2 +B2/2)γiφ]∂iβ
φ (2.212)

which simplifies as:

∂i[γ̃
1/2α2(ρhγ2vi + εijkEjBk)] = αγ̃1/2[ρhγ2vivφ −BiBφ]∂iβ

φ (2.213)

given that Eφ = 0 and γiφ∂i = ∂φ = 0. To simplify the overall derivation let us just assume that βφ = −ω = 0.
Then one has

∂i[γ̃
1/2α2(ρhγ2vi + εijkEjBk)] = 0 (2.214)

Now This can be further developed, using mass flux conservation and recalling that the divergence of any vector
field is just the divergence of its poloidal component:

∂i[γ̃
1/2α2(ρhγ2vi)] = γ̃1/2αργvi∂i[αγh] (2.215)

∂i[α
2γ̃1/2εijkEjBk] = −∂i[α2γ̃1/2εijkεjlmv

lBmBk]

= ∂i[α
2γ̃1/2(δilδ

k
m − δimδkl )vlBmBk] = ∂i[α

2γ̃1/2(viB2 −BivkBk)]

= ∂i[α
2γ̃1/2(kBiB2 −Bi[kBk + α−1(Ω)δkφ]Bk)]

= −∂i[γ̃1/2Bi(Ω)αBφ] = −γ̃1/2Bi∂i[(Ω)αBφ] (2.216)

where we have used the solenoidal condition on the magnetic field. Hence we find:

αργvi∂i[αγh]−Bi∂i[ΩαBφ] = 0 (2.217)

Recalling that vi∂i = kBi∂i then:

αργkBi∂i[αγh]−Bi∂i[ΩαBφ] = F (Ψ)Bi∂i[αγh]−Bi∂i[ΩαBφ] = Bi∇̃i[αγhF (Ψ)− ΩαBφ] = 0(2.218)

This again states that there is along magnetic surfaces another conserved quantity related to the energy flux:

H(Ψ) = αγhF (Ψ)− ΩαBφ ⇒ B(Ψ) = αγh− ΩBφ
kργ

(2.219)

and the related Bernoulli Integral, which generalizes to the MHD case the relation found in Sect. (1.14).

2.7 Acceleration of radial relativistic winds

Let us consider here the simplest case of an outflow where the magnetic surfaces are radial and containing only
a purely toroidal magnetic field. We have seen that the split-monopole solution of the pulsar equation, at large
distance from the Light Cylinder, indeed corresponds to a radial flow, where the toroidal magnetic field is much
larger than the poloidal component.

For a purely toroidal field, the conserved quantities that we have previously derived, are not well defined any
longer. For example the rotation rate Ω cannot be defined consistently, because, there is no such thing as the ro-
tation of a purely toroidal vector field. In the same way one cannot define properly a magnetic surface, given that
there is no poloidal field. It is however possible to define a flow surface, from the poloidal velocity. The two are
coincident in the limit Bp → 0. One needs to go back to the original conserved flux of RMHD and derive new con-
served quantities. Let us consider for simplicity and axisymmetric purely radial outflow vθ = 0, L = 0⇒ vφ = 0,
and v = vr. Far from the central source the metric can be assumed flat α = 1 and R = r sin (θ). The surface
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transverse area between two nearby flow/magnetic surface, will scale as r2.

Mass flux conservation implies:

γρvr2 = const γρr2 = const = Ṁ for v → 1. (2.220)

Let us now turn our attention to the spatial components of the momentum equation, and let us contract them with
the velocity.

∂i[γ̃
1/2(γρvi)hγvj + γ̃1/2pδij ]− (γ̃1/2)[(ρhγ2vkvk + pγkk)∂jγkk/2] =

= (γ̃1/2)[ρeEj + εjlkI
lBk] (2.221)

Recalling that the electric field in Ideal MHD is perpendicular to the velocity field one has:

vj∂i[γ̃
1/2(γρvi)hγvj + γ̃1/2pδij ]− (γ̃1/2)[(ρhγ2vkvk + pγkk)vj∂jγkk/2] =

= (γ̃1/2)εjlkv
jI lBk (2.222)

Now we proceed to do some simplifications, for example ∂j(γ̃1/2) = γ̃1/2γii∂jγii/2, so that we have:

vj∂i[(γ̃
1/2γρvi)hγvj ] + vj∂j [γ̃

1/2p]− (γ̃1/2)[ρhγ2vkvkvj∂jγkk/2]− pvj∂j(γ̃1/2) =

= (γ̃1/2)εrθφv
rIθBφ (2.223)

Now vr = vr and γrr = 1. Moreover we can introduce the ortho-normalized magnetic field. Setting Bφ =

r sin (θ)Bφ̂, and Bφ = r−1 sin (θ)
−1
Bφ̂ , we can simplify’:

vr∂rp+ ρh−1(γhvr)vi∂i[hγvr] = ρh−1vr∂rh
2/2 + ρh−1vr∂r[h

2γ2v2
r ]/2 = (2.224)

= ρh−1vr∂r[h
2γ2v2

r − h2]/2 = ρh−1vr∂r[h
2γ2]/2 = ργvr∂r[hγ] = (2.225)

= −γ̃−1/2vr∂r(Bφ)Bφ = −γ̃−1/2r−1vr∂r(rBφ̂)Bφ̂ (2.226)

and one has:

γ̃1/2ργvrr2∂r[hγ] = ∂r[r
2ρhγ2v] = −vr∂r[r2B2

φ̂
] = −vr∂r[r2B2] (2.227)

where we dropped the label r and φ from the velocity and magnetic field.

In the limit of radial speeds approaching the speed of light v → 1, the v ≈ const, and one has:

(ργ2h+B2)r2 = (ρh+ b2)γ2r2 = const = H (2.228)

where we have introduced the comoving magnetic field b = B/γ.

It is evident that H/Ṁ represents the maximum achievable Lorentz factor of the wind, once all pressure and
magnetic energy are converted into kinetic energy. It is also evident that to get a high Lorentz factor, one needs
either h� 1 or b2/ρ = σ � 1 at the base where the wind is launched. The parameter σ represents the magnetiza-
tion of the wind.

The case of a purely thermal wind was discussed in Sect. (1.14). Where it was found that the flow accelerates
linearly up to a point where all thermal energy is converted into kinetic energy.

Now let us consider the case of a cold wind with a strong toroidal magnetic field. The mass flux still provides
the radial behavior of the density γρ ∝ r−2. The flux freezing condition instead provides the radial behavior for
the toroidal magnetic field:

∂r(vrBφr
2) = 0 ⇒ Bφ̂ ∝ r

−1 b ∝ γ−1r−1 (2.229)
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then one has:

H

Ṁ
= (1 +

b2

ρ
)γ ≈ (1 +

const

γ
)γ ⇒ γ = const (2.230)

implying that in the case of a purely toroidal magnetic field, no matter how big is σ, there is no acceleration.
This can be understood by looking at the magnetic energy. As a shell of flow moves outward with speed→ c its
thickness δr stays constant, and its volume V ∝ r2. The magnetic energy will go as V B2 = const. There is no
change of the magnetic field energy as the flow expands, and by consequence no acceleration.

2.8 The Monopole Solution and the σ1/3 limit

We have seen in Sect. (2.7) that a radial relativistic outflow, dominated by the toroidal magnetic field, does not
accelerate. However, inside the Light Cylinder the magnetic field is mostly poloidal, and even outside the Light
Cylinder the ratio of the toroidal to the poloidal component scales as r. So the question to ask is, if in a monopo-
lar outflow the wind can accelerate to high speeds with high efficiency, before the asymptotic toroidal dominated
regime is established.

In order to simplify the analysis we will consider the case of a cold p = 0 wind, and we will focus just to
conditions at the equator sin θ = 1, where the magnetocetrifugal driving is going to be stronger, and where most
of the energy flux is concentrated. For the typical strong magnetic fields, characteristic of compact objects, that
are the prime engine for this kind of outflows, the cooling (via synchrotron) timescale is very short. Any thermal
energy will then be rapidly dissipated into synchrotron radiation.

To simplify what is going to be a complex derivation, we will consider the case of a flat space-time in spheri-
cal coordinates: xµ = [t, r, θ, φ] and gµν = diag[−1, 1, r2, r2 sin2 θ]. In this case one can greatly simplify the
derivation using physical-vectors (which we indicate as vî) instead of covariant and contravarint ones. The compo-
nents of a physical-vector are its ortho-normaized components. Given the metric choice we have done and the fact
that we have chosen to consider a purely radial flow vθ = vθ = 0⇒ vθ̂ = 0, vr = vr = vr̂ and vφ̂ = r sin (θ)vφ.
For simplicity we will drop the hat and assume all vector components (including the magnetic field) are ortho-
normalized.

2.8.0.1 Flow Invariants For a radial, equatorial (sin (θ) = 1), outflow one can immediately define a conserved
magnetic flux, according to Eq. (2.192), and a conserved mass flux according to Eq. (2.203)as:

γρvrr
2 = ρurr

2 = F, Brr
2 = ΦB (2.231)

while the azimuthal velocity obeys Ferraro’s Isorotation law, Eq. (2.202)

vφ = Ωr + vr
Bφ
Br

⇒ Bφ
Br

=
(vφ − Ωr)

vr
(2.232)

where Ω is the rotation rate of the magnetic field, that in the case of a rigid rotator, corresponds to the rotation rate
of the central engine.

The other two conserved quantities can be obtained from the specific energy and net angular momentum flux,
that in the case of a cold plasma h = 1 read:

H = γ − ΩBφr

kργ
= γ − ΩBφr

2r

kργr2
= γ − ΩBφΦBr

ργkBrr2

= γ − ΩBφΦBr

ργvrr2
= γ − ΩBφΦBr

F
(2.233)

FL = Fγrvφ −
Bφrγρr

2vr
ργk

= Fγrvφ −
Bφrγρr

2vrBr
ργvr

= Fγrvφ − rBφr2Br = Fγrvφ −BφΦBr (2.234)
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With these we can also define a new conserved quantity as G = FL/ΩΦ2
B .

Using the isorotation law Eq. (2.232) one has:

vφ =
GΩΦ2

B

Fγr
+
BφΦBr

Fγr
=
GΩΦ2

B

Fγr
+
Br(vφ − Ωr)ΦBr

Fγvrr

⇒ vφ

[
1− BrΦB

vrFγ

]
= vφ

[
1− B2

r

ρv2
rγ

2

]
=

Ωr

Fγvr

[
G
vr
c

Φ2
B

r2
−BrΦB

]
⇒ vφ

[
ρv2
rγ

2

B2
r

− 1

]
=

Ωr

r2B2
r

[GvrB
2
rr

2 −B2
rr

2]

⇒ vφ = Ωr[Gvr − 1]

[
ρv2
rγ

2

B2
r

− 1

]−1

= Ωr[vr − 1]
[
M2 − 1

]−1
(2.235)

where we have introduced the Alfvènic Mach number M = ρv2
rγ

2/B2
r . Regularity immediately tells us that the

constant G is nothing else than the reciprocal of the radial speed at the Alfvenic point M = 1.

The equations governing the problem can be cast in scale-free form using the rescaled quantities:

ur = γvr uφ = γvφ r = x

√
Φ2
B

F
= xlo (2.236)

such that M2 = x2ur. We can also introduce the invariant magnetization parameter:

σo =
Ω2Φ2

B

F
=

Ω2l2o
c

(2.237)

which basically represents the ratio of the energy flux in the electromagnetic component, oven the energy flux in
the matter component. Please note that this is an invariant, and is a constant of the problem at any radius. It should
not be confused with the ratio of the toroidal magnetic energy to the mass kinetic energy σ, previously used in
Sect. (2.7), which might change due to acceleration.

One then has:

γvφ = Ωr [Gvrγ − γ]
[
x2ur − 1

]−1
= σ1/2

o x
[γ −Gur]
[1− x2ur]

= uφ (2.238)

Bφ
Br

=
(γvφ − γΩr)

γvr
=
uφ − γΩr

ur
= σ1/2

o

x

ur

[γ −Gur]
[1− x2ur]

− σ1/2
o

xγ

ur

= σ1/2
o

x

ur

[x2γur −Gur]
[1− x2ur]

= σ1/2
o x

[x2γ −G]

[1− x2ur]
(2.239)

H = γ − Ωr
Bφ
Brr2

Φ2
B

F
= γ − σ

1/2
o xc

l2ox
2

Bφ
Br

l2o
c

= γ − σo
[x2γ −G]

[1− x2ur]
(2.240)

Combining the definition of the Lorentz factor with Eq. (2.238), one has:

γ2 = 1 + u2
r + u2

φ = 1− u2
r − σox2 [γ −Gur]2

[1− x2ur]2
(2.241)

On the other hand the Lorentz factor can also be obtained from the solution of Eq. (2.240) as:

γ[1− x2σo − x2ur] = H[1− x2ur]−Gσo ⇒ γ =
H[1− x2ur]−Gσo
[1− x2(σo + ur)]

(2.242)

which provides the following identity:

[γ −Gur]
[1− x2ur]

=
1

[1− x2ur]

[
H[1− x2ur]−Gσo
[1− x2(σo + ur)]

−Gur
]

=
H −G(σo + ur)

[1− x2(σo + ur)]
(2.243)
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2.8.0.2 Injection Conditions At this point it is possible to simplify the problem even further by looking at the
expected conditions at injection. We are interested just in the effects of magnetocentrifugal acceleration, so we can
assume that at small radii x→ 0 the speed goes to zero:

for r → 0 then ur → 0, γ → 1, M → 0,
[γ −Gur]
[1− x2ur]

=
[1−Gur]

[1− x2(σo + ur)]
(2.244)

Using these conditions in Eq. (2.240), one can fix the specific energy H = 1 + Gσo. Obviously a high Lorentz
factor can only be reached for σo � 1, which is the regime of interest. Then Eq. (2.243) gives:

[γ −Gur]
[1− x2ur]

=
[1−Gur]

[1− x2(σo + ur)]
(2.245)

2.8.0.3 Formal Solution Using these injection conditions, and equating the Lorentz factor from Eq. (2.241)
with the one from Eq. (2.242), one finds:

1− u2
r − σox2 [1−Gur]2

[1− x2(σo + ur)]2
=

[1− x2ur(1 +Gσo)]
2

[1− x2(σo + ur)]2

[1− u2
r][1− x2(σo + ur)]

2 − σox2[1−Gur]2 = [1− x2ur(1 +Gσo)]
2 (2.246)

This is the formal solution of the problem, relating ur to x for a given set of the parameters G and σo. However,
in this implicit form it is hard to get useful informations, in particular to solve it, or to constrain the possible phys-
ical solutions from the unphysical ones. It is possible to cast the formal solution into a form that will allow us to
investigate the parameter space and eventually select the only physically admissible solutions, and to derive their
properties.

To begin with, we will assume σo as a given parameter (in general this depends on the injection conditions at
the base, which are usually known), and we will use G, the angular momentum flux to label the solutions in the
x− ur parameter space (plane). Solving for G, one has:

σou
2
rx

2(σox
2−1)G2−2σou

2
rx

4G+[(u2
r−σox2−2u2

rx
2(σo+ur)−u2

rx
4 +(σo+ur)

2(1+u2
r)x

4] = 0 (2.247)

whose solutions are:

G± =
σou

2
rx

4 ±
√
σou2

rx
2[x2(σo + ur)− 1]2[σox2(1 + u2

r)− u2
r]

(σox2 − 1)σou2
rx

2
(2.248)

Note that the the two branches G± are mathematically distinct. We will show however, none of the two can be
taken as the real physical solution over the entire domain. The x − ur space will be partitioned into different
domains. The real physical solution will be represented by one branch in a given domain, and by the other in the
remaining domain, being the two equal at the boundary.

2.8.0.4 Parameter Space It is obvious that in the x − ur space, the region where the argument of the square
root is negative is an unphysical region, that must be excluded. It is also obvious that were the argument of the
square root vanishes the two solutions coincide. The argument of the square root can be written as:

σou
2
rx

6

(
ur +

σox
2 − 1

x2

)2 (
u2
r(σox

2 − 1) + σox
2
)

(2.249)

given that ur > 0 for outflows, and x > 0, we immediately see that for σox2 > 1 the argument of the square root
is always positive, and the entire x−ur space is admissible. Instead for σox2 < 1 one finds that the region defined
by (u2

r(σox
2− 1) +σox

2) < 0 must be excluded. This implies a boundary Co, of the admissible domain such that:

ur(Co) =

√
σox2

(1− σox2)
for σox

2 < 1 (2.250)
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Physical solutions exist only for ur < ur(Co). This boundary pass from the origin (x = 0, ur = 0), and
asymptotically approaches x = 1/

√
(σo). Note that, for σox2 < 1 the argument of the square root, Eq. (2.249),

has also a singular zero (such that its sign does not change across it) on a boundary C± given by:

ur(C±) =
(1− σox2)

x2
for σox

2 < 1 (2.251)

This boundary separates the region whereG+ is bigger thanG− from the one where it is smaller. On this boundary
G+ = G−. This boundary passes through the point x2σo = 1, ur = 0, and intersects the boundary Co in the
point x2 = (σ

1/3
o + σo)

−1, ur = σ
1/3
o . One can thus partition the x− ur plane into several domains as shown in

Fig. (2.4).

Figure 2.4 The various domains for the monopolar outflow solution: A is the domain of imaginary solutions. B the domain
where G+ > G−, while C and D are the domain where G− > G+ and only G− is regular at σox

2 = 1.

Excluding the domain A of imaginary solutions, one has:

in regions D (x2σo > 1) and C (C±(x) < ur(x) < Co(x)) only the G− solutions are acceptable, because they
do not diverge on σox2 → 1.

G−(σox
2 → 1) =

1

ur
+

u2
r

2σo
G+(σox

2 → 1) = ±∞ (2.252)

so they are the only one that can extend in principle from x2 < 1/σo to x =∞, as we expect for an outflow.

in the region B the only physically meaningful solutions are G+ which stay always positive while G− change
sign. Given that G is related to the angular momentum, a positive value implies spin-up, while the physical
expectation is that outflows should spin down the engine. Moreover for ur →∞ at finite radii G− diverge.

2.8.0.5 Acceleration In order to understand the properties of the solutions at large radii, and in particular its
acceleration, we need to investigate the behavior of the function G−, recalling that the iso-levels of this function
represent solutions of the RMHD equations for our problem. We begin by looking at its partial derivative with
respect to ur, which after some simplifications can be written as:

∂G−
∂ur

=
x2
[
−σ2

ox
2 + σo

(
u3
rx

2 − urx2 + 1
)

+ u3
r

(
urx

2 − 1
)]

ur

√
σou2

rx
2 (σox2 + urx2 − 1)

2
(u2
r (σox2 − 1) + σox2)

(2.253)

Setting this to zero one can derive the location of the maxima and minima with respect to changes of ur. We have:

∂G−
∂ur

= 0 ⇒ x2
(
u3
r − σo

) (
σox

2 + urx
2 − 1

)
= 0 (2.254)
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obviously for σox2 > 1 there is only a minimum at fixed x for ur = σ
1/3
o , and G− can be shown to diverge for

ur → 0,∞ at any finite value of x .
At ur = σ

1/3
o , for x→∞, G−(x→∞, ur) one finds the value ofG of the solution representing the separatrix:

G−(x→∞, ur) =

(
σ

2/3
o + 1

)3/2

− 1

σo
→ 1 +

3

2

1

σ
2/3
o

for σo →∞ (2.255)

As shown by equation Eq. (2.254) the location of the other zero (representing a maximum) coincides with the C±
boundary. We find that the intersection of the C± boundary with the Co boundary, is located at ur = σ

1/3
o . This

implies that the allowed (A+C) space can be further divided into regions with separate behaviors, as in Fig. (2.5):

region E1 represents solutions that at infinity have ur > σ
1/3
o , and G > G−(x → ∞, ur = σ1/3). These

solutions however never go to ur = 0 because they are bound to stay above the ur = σ1/3) curve (for the very
nature of the maximum). They are rejected because they do not represent outflows with the correct injection
conditions.

region E2 represents solutions that have G < G−(x → ∞, ur = σ1/3). These solutions do not extend to
infinity, and as such they are rejected because they do not represent outflows.

region E3 represents solutions that at infinity have , ur < σ
1/3
o , and G > G−(x → ∞, ur = σ1/3). These

solutions can be matched smoothly with solutions C+ at the C± boundary in order to obtain a total solution
that goes to ur = 0 in x = 0 because, on the other hand, they are bound to stay below the ur = σ1/3) curve.
Given that the G+ solutions of region B for ur = 0 the G+ are finite only in x = 0 (they diverge for x > 0),
this ensures that all of them satisfy the correct injection conditions. They are the only physically acceptable
ones.

Figure 2.5 The various domains for the monopolar outflow solutions: A is the domain of imaginary solutions. B the domain
where only G+ are acceptable. E1 is the region of solutions that do not go to ur = 0, E2 is the region of solutions that cannot
reach x = ∞, E3 is the region of acceptable physical solution that smoothly connect from the origin to infinity. The dashed
purple line is the ur = σ

1/3
o curve. Dotted lines are typical solutions (iso-levels of G).

We still have to determine which of the many possible solutions of region E3 is the correct one. It is however
immediately evident that, no matter which one is selected, the maximum value of the terminal Lorentz factor will
be:

γ∞ ≤ σ1/3
o (2.256)
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This is the so called σ1/3
o limit.

Now H = 1 + Gσo ' σo. This, in principle, constitutes the maximum achievable Lorentz factor, if magnetic
acceleration (conversion of magnetic energy to kinetic one) is efficient, as can be seen from the definition of H
setting Bφ = 0. Unfortunately the solutions never achieve such high values, but the much smaller one σ1/3

o : if one
has at the base of the outflow a value σo = 106 the terminal Lorentz factor is only γ∞ = 100, despite the invariant
H being 106. This means that the outflow stays magnetically dominated to infinity.

It is possible to show that the true solution is indeed the one going to ur(x = ∞) = σ
1/3
o . This solution cor-

responds to the minimum of the angular momentum flux G, which means that the torque on the central engine is
minimal. Given that the torque, like the energy flow, is mostly electromagnetic, this implies that this solution has
the smallest possible value of the magnetic pressure (B2

φ) at any given radius. This is of course the solution to
which the system will relax, the other solutions being all over-pressurized with respect to it.

2.9 Collimation and acceleration

It is evident that for a relativistic radial outflow, the efficiency of magnetocentrifugal acceleration, is small, and a
highly magnetized flow remains highly magnetized even at infinite distance.

We will consider here what happens if the radial assumption is relaxed, and one allows for flux surfaces with
different shapes, as in Fig. 2.6. For simplicity we will consider the case of a purely toroidal magnetic field. Obvi-
ously this is a limiting case, but if one gets efficient acceleration in this regime, then the same result will still hold
for a more realistic case of negligible (but not zero) poloidal field.

Figure 2.6 Collimated parabolic flow surfaces.

Ler us call dA the area bounded by two nearby flow surfaces, and vp the poloidal velocity. As in the case
of purely radial outflow discussed in Sect. (2.7) we assume no azimuthal velocity, vφ = 0, and a purely toroidal
magnetic field, Bp = 0. Following what was done in Sect. (2.3.2) we will use orthonormal components for the
various vector quantities. Using a cylindrical reference frame let us call R the radius of the anular area, and δr its
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thickness, while z labels its vertical position.

Mass flux conservation reads, for dA = 2πRδr → 0:

γρvp(2πRδr) = const → ρ ∝ γ−1R−1δr−1 for vp → 1 (2.257)

While magnetic flux conservation reads:

Bφvpδr = const → Bφ ∝ δr−1 for vp → 1 (2.258)

Then we have that the comoving magnetic field bφ ∝ γ−1δr−1 and the ratio of magnetic energy density to rest
mass energy density is b2φ/ρ ∝ (R/δr)γ−1. Finally we can write down, using the flow invariants, in the limit of a
cold plasma h = 1:

H

F
= γmax =

(
1 +

bφ
ρ

)
γ = γ

(
1 + k

R

δrγ

)
≈ k Ro

δro
for γmax � 1

γ ' k
Ro
δro

(
1− δro

Ro

R

δr

)
= γmax

(
1− δro

Ro

R

δr

)
(2.259)

Let us assume that the flow moves along collimated surfaces. In particular we consider the case of parabolic
surfaces, with differential collimation z = zo(R/Ro)

ξ(Ro). ξ(Ro) describes the level of differential collimation,
while Ro labels the magnetic surface, with reference to its radius at z = zo. Then one has:

δr =
∂

∂Ro
R(Ro, z, zo)δro = δro

∂

∂Ro

(
Ro

[
z

zo

]1/ξ(Ro)
)

= δro

[
z

zo

]1/ξ(Ro)

− δro
Ro

ξ(Ro)2

dξ(Ro)

dRo
ln

[
z

zo

] [
z

zo

]1/ξ(Ro)

= δro

[
z

zo

]1/ξ(Ro) [
1− δro

Ro
ξ(Ro)2

dξ(Ro)

dRo
ln

[
z

zo

]]
(2.260)

then we get the following geometrical trend for the evolution of the separation of flow surfaces:

δr

R
=
δro
Ro

[
1− δro

Ro
ξ(Ro)2

dξ(Ro)

dRo
ln

[
z

zo

]]
(2.261)

Thus, is ξ is constant and hence all flow surfaces are uniformly collimated, then δr/R is also a constant and the
magnetic acceleration fails. This includes the case ξ = 1 corresponding to purely radial (conical) flows. If instead
dξ/dRo < 0 (ξ is larger for smaller Ro), corresponding to a situation where the inner flow surfaces (at smaller
Ro) are collimated faster (have bigger ξ) then the outer one, then δr/R increases and the flow accelerates. Note
however that the acceleration in this idealized, purely toroidal case, is still not very efficient, depending only loga-
rithmically on the distance z.

It is thus reasonable to ask under which circumstances differential collimation can be established. In order for
this to happen, the inner region of the outflow, closer to the axis, must know what the outer regions are doing. So
signals must be able to travel across the flow. In the subsonic case, this is always possible, because the outflow is
all causally connected. Things change for supersonic flows. In MHD flows the fastest speed at which a signal can
travel is the so called fast magnetosonic speed cfms, as derived in Sect. (2.4), and represents a MHD generalization
of the sound speed in hydrodynamics. Its value in the comoving frame is given by Eq. (2.152), that in the case of a
purely toroidal field bx = 0 and cold plasma cs = 0 is:

c2fms = c2m =
b2φ

b2φ + ρ
→ 1 for b2φ � ρ (2.262)
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This implies that the signals propagate within a cone of opening angle θ ∼ γ−1. So differential collimation can act
only if (or until):

θflowγ ≤ 1 (2.263)

where θflow is the opening angle of the outflow. For AGN, for example, θflow ∼ 10◦ and γ ∼ 10, so the condition
is satisfied. For GRBs θflow ∼ 5◦ and γ ∼ 100−1000, so the condition is not satisfied, and differential collimation
is likely not to be the reason for such high Lorentz factors.



APPENDIX A

KERR METRIC

The line element for the Kerr metric due to a rotating Black Hole of mass M and angular mometum J = aM in
Boyer-Lindquist coordinates [t, r, θ, φ] is:

ds2 = −ρ
2∆

Σ
dt2 +

ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2
sin2 (θ)

[
dφ− 2a

Mr

Σ2
dt

]
(A.1)

where:

ρ2 = r2 + a2 cos2 (θ), ∆ = r2 + a2 − 2Mr (A.2)
Σ2 = (r2 + a2)2 − a2∆ sin2 (θ) = (r2 + a2)ρ2 + 2Mra2 sin2 (θ) (A.3)

The non vanishing terms of the metric tensor are:

grr = γrr =
ρ2

∆
, gθθ = γθθ =

ρ2

∆
, gtφ = γφφβ

φ = −2Mar

ρ2
sin2 (θ) (A.4)

gφφ = γφφ =
Σ2

ρ2
sin2 (θ) =

[
r2 + a2 +

2Mra2 sin2 (θ)

ρ2

]
sin2 (θ) (A.5)

gtt = −
[
ρ2∆

Σ2
− 4M2a2r2

Σ4

Σ2

ρ2
sin2 (θ)

]
= −

[
1− 2Mr

ρ2

]
(A.6)

It can be shown that a free-falling observer, being at rest at r = ∞, at the event horizon will have a four-velocity
approaching the null geodesic (its velocity will reach the speed of light):

uµ =

[
r2 + a2

∆
,−1, 0,

a

∆

]
. (A.7)

One can easily verify that this four-velocity describe a null geodesic. With some lengthy algebra:

uµ =

[
−1,−ρ

2

∆
, 1, 0, a sin2 (θ)

]
. (A.8)
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and, introducting the lapse α2 = ρ2∆
Σ , one finds:

uµn
µ = −r

2 + a2

∆
α = −

[
ρ2(r2 + a2)

Σ2

]
1

α
= − 1

α

[
1− 2Ma2r sin2 (θ)

Σ2

]
(A.9)



APPENDIX B

METRIC VARIATIONS

B.0.1 Variation of the metric elements

We recall that given any non-singular square matrix M , one has M−1 ·M = I . If one takes the variations,
recalling that the variations of the identity matrix vanishes, and that matrix multiplication does not commute, then
one has:

δI = 0 = (δM−1) ·M +M−1 · (δM) ⇒ δM−1 = −M−1 · (δM) ·M−1 (B.1)

Applying this relation to the metric g one finds:

δgµν = −gµα(δgαβ)gβν = −gµαgνβδgαβ
⇒ gµνδg

µν = −gµνgµα(δgαβ)gβν = −δαν (δgαβ)gβν = −gαβδgαβ = −gµνδgµν (B.2)

B.0.2 Variation of the metric determinant

Any non-singular square matrix M can be diagonalized according to M = E−1 ·D · E, where D is diagonal,
and E represent the matrix of eigenvectors. Now recallign that the determinant of the product is the product of the
determinants, one has:

det[M ] = det[E−1]det[D]det[E] = det[D] (B.3)

given that det[E−1]det[E] = det[E−1 ·E] = det[I] = 1. Now:

δ(det[D]) =
∑
µ

det[D]

Dµµ
δDµµ =

∑
µ

det[D]DµµδDµµ (B.4)

Now δM = E−1 · δD ·E, andM−1 = E−1 ·D−1 ·E.

MµνδMµν = δµαM
ανδMνµ = δµα(E−1)ασD

σκδDκρE
ρ
µ = (E−1)µσD

σκδDκρE
ρ
µ (B.5)

= δρσD
σκδDκρ = DσκδDκσ = DµµδDµµ (B.6)
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Hence:

δ(det[M ]) = det[M ]MµνδMµν (B.7)

Applying this relation to the determinant of the metric g one has:

δ
√
−g = − 1

2
√
−g

δg = − 1

2
√
−g

ggµνδgµν = −1

2

√
−ggµνδgµν (B.8)



APPENDIX C

COMMUTATORS RELATIONS

The following commutative relations hold:

∇µ∇νΦ−∇ν∇µΦ = ∂µ∂νΦ− Γσµν∂σΦ− ∂ν∂µΦ + Γσνµ∂σΦ = 0 (C.1)

∇µ∇µ∇νΦ−∇ν∇µ∇µΦ = ∇µ∇µ∇νΦ−∇µ∇ν∇µΦ +R ν
µ∇µΦ = R ν

µ∇µΦ = Rµν∇µΦ (C.2)

where in the last we have used the first equality and the commutator relation:

∇µ∇νVσ −∇ν∇µVσ = RσκµνV
κ ⇒ ∇µ∇νV µ −∇ν∇µV µ = Rµκµ

νV κ = R ν
κ V

κ (C.3)
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APPENDIX D

NOTES ON THE LIE DERIVATIVE

The Lie derivative of the vector field V by a vector fieldX is defined as

LXV
a = Xµ∇µV a − V µ∇µXa

= ∇µ[XµV a − V µXa]− V a∇µXµ +Xa∇µV µ (D.1)

From this it is possible to develope a derivative preserving the unitary norm of a vector field if V a = V a/(
√
−V bVb)

then −V bVb = 1:

Ln
XV

a = Xµ∇µV a − V µ∇µXa + V a
−1

2

1

(−V bVb)3/2
[−2VbLxV

b]

= Xµ∇µV a − V µ∇µXa + V a[Vb(X
µ∇µV b − V µ∇µXb)]

= Xµ∇µV a − V µ∇µXa − V aV bV µ∇µXb (D.2)

In the same way it is possible to develope a derivative that preserves the divergence-free nature of a vector field
(∇µV µ = 0). Recalling that for an antisymmetric tensor Kµν one has ∇µ∇νKµν = 0 then one has:

Ld
XV

a = Xµ∇µV a − V µ∇µXa + V a∇µXµ

= ∇µ[XµV a − V µXa] (D.3)

The contraction of the lie derivative with a generic vector Y µ is

YaLXV
a = Ya∇µ[XµV a − V µXa]− V a∇µXµ +Xa∇µV µ

= ∇µ[XµYaV
a − V µYaXa]− [XµV a − V µXa]∇µYa − YaV a∇µXµ + YaX

a∇µV µ

= ∇µ[XµYaV
a − V µYaXa]−XµV a∇µYa + V µXa∇µYa − YaV a∇µXµ + YaX

a∇µV µ

= ∇µ[XµYaV
a − V µYaXa]−XµV a∇µYa + V aXµ∇aYµ − YaV a∇µXµ + YaX

a∇µV µ

= ∇µ[XµYaV
a − V µYaXa]−XµV a[∇µYa −∇aYµ]− YaV a∇µXµ + YaX

a∇µV µ (D.4)

and:

YaL
d
XV

a = ∇µ[XµYaV
a − V µYaXa]−XµV a[∇µYa −∇aYµ] (D.5)
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